In: Math
Consider the following gasoline sales time series. If needed, round your answers to two-decimal digits.
|
Let shows the actual value for year t and shows the forecasted value of year t. So exponential smoothing forecast formula is
(a)
Following table shows the forecasted values for a =0.1 and a =0.2:
Week | Sales (1,000s of gallons), Yt | Ft, alpha=0.1 | Ft, alpha=0.2 |
1 | 18 | 18 | 18 |
2 | 22 | 18 | 18 |
3 | 15 | 18.4 | 18.8 |
4 | 24 | 18.06 | 18.04 |
5 | 18 | 18.65 | 19.23 |
6 | 15 | 18.59 | 18.98 |
7 | 21 | 18.23 | 18.18 |
8 | 19 | 18.51 | 18.74 |
9 | 21 | 18.56 | 18.79 |
10 | 20 | 18.8 | 19.23 |
11 | 16 | 18.92 | 19.38 |
12 | 22 | 18.63 | 18.7 |
13 | 18.97 | 224.07 |
(b)
Following table shows the calculations for MSE:
Week | Sales (1,000s of gallons), Yt | Ft, alpha=0.1 | Ft, alpha=0.2 | e^2=(Yt-Ft)^2, alpha=0.1 | e^2=(Yt-Ft)^2, alpha=0.2 |
1 | 18 | ||||
2 | 22 | 18 | 18 | 16 | 16 |
3 | 15 | 18.4 | 18.8 | 11.56 | 14.44 |
4 | 24 | 18.06 | 18.04 | 35.2836 | 35.5216 |
5 | 18 | 18.65 | 19.23 | 0.4225 | 1.5129 |
6 | 15 | 18.59 | 18.98 | 12.8881 | 15.8404 |
7 | 21 | 18.23 | 18.18 | 7.6729 | 7.9524 |
8 | 19 | 18.51 | 18.74 | 0.2401 | 0.0676 |
9 | 21 | 18.56 | 18.79 | 5.9536 | 4.8841 |
10 | 20 | 18.8 | 19.23 | 1.44 | 0.5929 |
11 | 16 | 18.92 | 19.38 | 8.5264 | 11.4244 |
12 | 22 | 18.63 | 18.7 | 11.3569 | 10.89 |
Total | 111.3441 | 119.1263 |
So MSE for a =0.1:
So MSE for a =0.2:
Applying the MSE measure of forecast accuracy, you should prefer a smoothing constant of α = 0.1 smoothing constant provides the more accurate forecast, with an overall MSE of 10.12.
(c)
Week | Sales (1,000s of gallons), Yt | Ft, alpha=0.1 | Ft, alpha=0.2 | |e|=|Yt-Ft|, alpha=0.1 | |e|=|Yt-Ft|, alpha=0.2 |
1 | 18 | ||||
2 | 22 | 18 | 18 | 4 | 4 |
3 | 15 | 18.4 | 18.8 | 3.4 | 3.8 |
4 | 24 | 18.06 | 18.04 | 5.94 | 5.96 |
5 | 18 | 18.65 | 19.23 | 0.65 | 1.23 |
6 | 15 | 18.59 | 18.98 | 3.59 | 3.98 |
7 | 21 | 18.23 | 18.18 | 2.77 | 2.82 |
8 | 19 | 18.51 | 18.74 | 0.49 | 0.26 |
9 | 21 | 18.56 | 18.79 | 2.44 | 2.21 |
10 | 20 | 18.8 | 19.23 | 1.2 | 0.77 |
11 | 16 | 18.92 | 19.38 | 2.92 | 3.38 |
12 | 22 | 18.63 | 18.7 | 3.37 | 3.3 |
Total | 30.77 | 31.71 |
So MAD for a =0.1:
So MSE for a =0.2:
Applying the MAD measure of forecast accuracy, you should prefer a smoothing constant of α = 0.1 smoothing constant provides the more accurate forecast, with an overall MAD of 2.80.
(d)
Week | Sales (1,000s of gallons), Yt | Ft, alpha=0.1 | Ft, alpha=0.2 | |Yt-Ft|/Yt, alpha=0.1 | |Yt-Ft|/Yt, alpha=0.2 |
1 | 18 | ||||
2 | 22 | 18 | 18 | 0.181818182 | 0.181818182 |
3 | 15 | 18.4 | 18.8 | 0.226666667 | 0.253333333 |
4 | 24 | 18.06 | 18.04 | 0.2475 | 0.248333333 |
5 | 18 | 18.65 | 19.23 | 0.036111111 | 0.068333333 |
6 | 15 | 18.59 | 18.98 | 0.239333333 | 0.265333333 |
7 | 21 | 18.23 | 18.18 | 0.131904762 | 0.134285714 |
8 | 19 | 18.51 | 18.74 | 0.025789474 | 0.013684211 |
9 | 21 | 18.56 | 18.79 | 0.116190476 | 0.105238095 |
10 | 20 | 18.8 | 19.23 | 0.06 | 0.0385 |
11 | 16 | 18.92 | 19.38 | 0.1825 | 0.21125 |
12 | 22 | 18.63 | 18.7 | 0.153181818 | 0.15 |
Total | 1.600995823 | 1.670109535 |
So MAD for a =0.1:
So MSE for a =0.2:
Applying the MPAE measure of forecast accuracy, you should prefer a smoothing constant of α = 0.1 smoothing constant provides the more accurate forecast, with an overall MPAE of 14.55%.