In: Statistics and Probability
Consider the following gasoline sales time series. If needed, round your answers to two-decimal digits.
Week | Sales (1,000s of gallons) |
1 | 17 |
2 | 23 |
3 | 14 |
4 | 25 |
5 | 17 |
6 | 16 |
7 | 22 |
8 | 19 |
9 | 21 |
10 | 19 |
11 | 17 |
12 | 23 |
(a) | Show the exponential smoothing forecasts using α = 0.1, and α = 0.2. | |||||||||
|
||||||||||
(b) | Applying the MSE measure of forecast accuracy, would you prefer a smoothing constant of α = 0.1 or α = 0.2 for the gasoline sales time series? | |||||||||
An - Select your answer -α = 0.1α = 0.2Item 3 smoothing constant provides the more accurate forecast, with an overall MSE of . | ||||||||||
(c) | Are the results the same if you apply MAE as the measure of accuracy? | |||||||||
An - Select your answer -α = 0.1α = 0.2Item 5 smoothing constant provides the more accurate forecast, with an overall MAE of . | ||||||||||
(d) | What are the results if MAPE is used? | |||||||||
An - Select your answer -α = 0.1α = 0.2Item 7 smoothing constant provides the more accurate forecast, with an overall MAPE of . |
for exponential smoothing: next period forecast =α*last period actual+(1-α)*last period forecast |
at alpha =0.1:
week | value | forecast | error | error^2 | |A-F|/A |
1 | 17 | ||||
2 | 23 | 17.00 | 6.000 | 36.000 | 0.260869565 |
3 | 14 | 17.60 | 3.600 | 12.960 | 0.257142857 |
4 | 25 | 17.24 | 7.760 | 60.218 | 0.3104 |
5 | 17 | 18.02 | 1.016 | 1.032 | 0.059764706 |
6 | 16 | 17.91 | 1.914 | 3.665 | 0.11965 |
7 | 22 | 17.72 | 4.277 | 18.293 | 0.194410909 |
8 | 19 | 18.15 | 0.849 | 0.721 | 0.044701895 |
9 | 21 | 18.24 | 2.764 | 7.642 | 0.13163821 |
10 | 19 | 18.51 | 0.488 | 0.238 | 0.025682219 |
11 | 17 | 18.56 | 1.561 | 2.436 | 0.091813768 |
12 | 23 | 18.40 | 4.595 | 21.116 | 0.19979345 |
13 | 18.86 | 34.825 | 164.322 | 1.696 | |
average | 3.17 | 14.938 | 15.42% | ||
MAE | MSE | MAPE |
at alpha=0.2
week | value | forecast | error | error^2 | |A-F|/A |
1 | 17 | ||||
2 | 23 | 17.00 | 6.000 | 36.000 | 0.260869565 |
3 | 14 | 18.20 | 4.200 | 17.640 | 0.3 |
4 | 25 | 17.36 | 7.640 | 58.370 | 0.3056 |
5 | 17 | 18.89 | 1.888 | 3.565 | 0.111058824 |
6 | 16 | 18.51 | 2.510 | 6.302 | 0.1569 |
7 | 22 | 18.01 | 3.992 | 15.934 | 0.18144 |
8 | 19 | 18.81 | 0.193 | 0.037 | 0.010176 |
9 | 21 | 18.85 | 2.155 | 4.643 | 0.102603581 |
10 | 19 | 19.28 | 0.276 | 0.076 | 0.014539992 |
11 | 17 | 19.22 | 2.221 | 4.933 | 0.130647522 |
12 | 23 | 18.78 | 4.223 | 17.835 | 0.183617117 |
13 | 19.62 | 35.299 | 165.334 | 1.757 | |
average | 3.21 | 15.030 | 15.98% | ||
MAE | MSE | MAPE |
a)
week | alpha =0.1 | alpha =0.2 | |
13 | 18.86 | 19.62 |
b)
0.1 smoothing constant provides the more accurate forecast, with an overall MSE of 14.94
c)
0.1 smoothing constant provides the more accurate forecast, with an overall MAE of 3.17
d)
0.1 smoothing constant provides the more accurate forecast, with an overall MAPE of 15.42 %