Question

In: Statistics and Probability

Exercise 4 (Indicator variables). Let (Ω, P) be a probability space and let E ⊆ Ω...

Exercise 4 (Indicator variables). Let (Ω, P) be a probability space and let E ⊆ Ω be an event. The indicator variable of the event E, which is denoted by 1E , is the RV such that 1E (ω) = 1 if ω ∈ E and 1E(ω)=0ifω∈Ec.Showthat1E isaBernoullivariablewithsuccessprobabilityp=P(E).

Exercise 5 (Variance as minimum MSE). Let X be a RV. Let xˆ ∈ R be a number, which we consider as a ‘guess’ (or ‘estimator’ in Statistics) of X . Let E[(X − xˆ)2] be the mean squared error (MSE) of this estimation.

(i) Showthat

E[(X −xˆ)2]=E[X2]−2xˆE[X]+xˆ2 (2) =(xˆ−E[X])2 +E[X2]−E[X]2 (3) =(xˆ−E[X])2 +Var(X). (4)

(ii) ConcludethattheMSEisminimizedwhenxˆ=E[X]andtheglobalminimumisVar(X).Inthis sense, E[X ] is the ‘best guess’ for X and Var(X ) is the corresponding MSE.

Exercise 6. Suppose we have the following sample of Google’s stock price for the past 50 weeks (unit in $ per stock).

320 326 325 318 322 320 329 317 316 331 320 320 317 329 316 308 321 319 322 335 318 313 327 314 329 323 327 323 324 314 308 305 328 330 322 310 324 314 312 318 313 320 324 311 317 325 328 319 310 324

(i) Compute the sample mean x ̄ and sample standard deviation x.
(ii) Draw the ordered stem-and-leaf display. How many sample values are between x ̄ ± s, and

x ̄±2s?
(iii) Give the five-number summary of the sample. Draw the corresponding box plot.

Solutions

Expert Solution

The R-code useful for all calculations are provided as below:

x=c(320,326,325,318,322,320,329,317,316,331,320,320,317,329,316,308,321,319,322,335,318,313,327,314,329,323,327,323,324,314,308,305,328,330,322,310,324,314,312,318,313,320,324,311,317,325,328,319,310,324)
sort(x)
length(x)
xbar=mean(x);xbar
x_sqbar=mean(x^2);x_sqbar
var=x_sqbar-(xbar)^2;var
sd=sqrt(var);sd
l1=xbar-sd;u1=xbar+sd
l2=xbar-(2*sd);u2=xbar+(2*sd)
l1;u1;l2;u2
count1=0;count2=0
for(i in 1:length(x))
{
count1[i]=ifelse(l1<=x[i] && x[i]<=u1,1,0)
count2[i]=ifelse(l2<=x[i] && x[i]<=u2,1,0)
}
sum(count1)
sum(count2)
quantile(x)
boxplot(x)


Related Solutions

Let (Ω, F , P) be a probability space. Suppose that Ω is the collection of...
Let (Ω, F , P) be a probability space. Suppose that Ω is the collection of all possible outcomes of a single iteration of a certain experiment. Also suppose that, for each C ∈ F, the probability that the outcome of this experiment is contained in C is P(C). Consider events A, B ∈ F with P(A) + P(B) > 0. Suppose that the experiment is iterated indefinitely, with each iteration identical and independent of all the other iterations, until...
Let Prob be a probability function on the power set P(Ω) of a sample space Ω....
Let Prob be a probability function on the power set P(Ω) of a sample space Ω. Let B be a set such that Prob(B) > 0. For any set A, define G(A|B) = Prob(A ∩ B) Prob(B) . Prove that for fixed B and as as a function of A, G(·|B) is also a probability function, meaning that G(·|B) satisfies the axioms of probability..
Let A, B and C be mutually independent events of a probability space (Ω, F, P),...
Let A, B and C be mutually independent events of a probability space (Ω, F, P), such that P(A) = P(B) = P(C) = 1 4 . Compute P((Ac ∩ Bc ) ∪ C). b) [4 points] Suppose that in a bicycle race, there are 19 professional cyclists, that are divided in a random manner into two groups. One group contains 10 people and the other group has 9 people. What is the probability that two particular people, let’s say...
Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p, 0<p<1....
Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p, 0<p<1. (a) Find P(X>Y). (b) Find P(X+Y=n) and P(X=k|X+Y=n), for n=2,3,..., and k=1,2,...,n−1. I need an answer asap please. Thank you.
Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X)...
Let X and Y be continuous random variables with E[X] = E[Y] = 4 and var(X) = var(Y) = 10. A new random variable is defined as: W = X+2Y+2. a. Find E[W] and var[W] if X and Y are independent. b. Find E[W] and var[W] if E[XY] = 20. c. If we find that E[XY] = E[X]E[Y], what do we know about the relationship between the random variables X and Y?
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that...
Q2. Let (E, d) be a metric space, and let x ∈ E. We say that x is isolated if the set {x} is open in E. (a) Suppose that there exists r > 0 such that Br(x) contains only finitely many points. Prove that x is isolated. (b) Let E be any set, and define a metric d on E by setting d(x, y) = 0 if x = y, and d(x, y) = 1 if x and y...
9.8 Let X and Y be independent random variables with probability distributions given by P(X =...
9.8 Let X and Y be independent random variables with probability distributions given by P(X = 0) = P(X = 1) = 1/2 and P(Y = 0) = P(Y = 2) = 1/2 . a. Compute the distribution of Z = X + Y . b. Let Y˜ and Z˜ be independent random variables, where Y˜ has the same distribution as Y , and Z˜ the same distribution as Z. Compute the distribution of X˜ = Z˜ − Y
Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p, 0...
Let X and Y be i.i.d. geometric random variables with parameter (probability of success) p, 0 < p < 1. (a) (6pts) Find P(X > Y ). (b) (8pts) Find P(X + Y = n) and P(X = k∣X + Y = n), for n = 2, 3, ..., and k = 1, 2, ..., n − 1
Probability Let A, B and C be Boolean variables denoting three independent events with P(A=1) =...
Probability Let A, B and C be Boolean variables denoting three independent events with P(A=1) = 0.7, P(B=1) = 0.3, and P(C=1) = 0.1. Let D be the event that at least one of A and B occurs, i.e., D = A OR B. Let E be the event that at least one of B and C occurs, i.e., E = B OR C. Let F be the event that exactly one of A and B occurs, i.e., F =...
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is...
(a) Let <X, d> be a metric space and E ⊆ X. Show that E is connected iff for all p, q ∈ E, there is a connected A ⊆ E with p, q ∈ E. b) Prove that every line segment between two points in R^k is connected, that is Ep,q = {tp + (1 − t)q | t ∈ [0, 1]} for any p not equal to q in R^k. C). Prove that every convex subset of R^k...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT