Question

In: Advanced Math

(a) Apply the chain rule to express ∂/∂ρ, ∂/∂ϕ, and ∂/∂θ using ∂/∂x, ∂/∂y, and ∂/∂z....

(a) Apply the chain rule to express ∂/∂ρ, ∂/∂ϕ, and ∂/∂θ using ∂/∂x, ∂/∂y, and ∂/∂z.

(b) Solve algebraically for ∂/∂x, ∂/∂y, and ∂/∂z with ∂/∂ρ, ∂/∂ϕ, and ∂/∂θ when ρ does NOT equal  0 and sin ϕ does NOT equal 0. (Hint: you can use method of elimination to reduce the number of variables.)

(c) Express ∂2/∂x2 with ρ, ϕ, θ, and their partials.

Solutions

Expert Solution


Related Solutions

For x = ρsinφcosθ; y = ρsinφsinθ; z = ρcosφ: a/ Express ∂^2/∂y^2 with ρ, φ,...
For x = ρsinφcosθ; y = ρsinφsinθ; z = ρcosφ: a/ Express ∂^2/∂y^2 with ρ, φ, θ, and their partials. b/ Express ∂^2/∂z^2 with ρ, φ, θ, and their partials. c/ Express the Laplacian operator using spherical coordinates.
Define (x,y,θ) ~ P(x,y,θ) as follows: θ ~ Unif{0.1,0.9} (x,y) |θ ~ Bern(x|θ) Bern(y|θ) Where Bern(....
Define (x,y,θ) ~ P(x,y,θ) as follows: θ ~ Unif{0.1,0.9} (x,y) |θ ~ Bern(x|θ) Bern(y|θ) Where Bern(. | θ) is the p.m.f. for a Bernoulli random variable which takes the value 1 or 0 with probability, θ, (1-θ) respectively. Find probabilities a) Pr(x=0, y=0) ? (enter answer in decimal form, e.g. 0.56 ) (b) Pr(x=1, y=1) ? (enter answer in decimal form, e.g. 0.56 ) (c) Pr(x=1, y=0)   ? (enter answer in decimal form, e.g. 0.56 ) (d) Pr(x=0, y=1) ?...
Consider the ring homomorphism ϕ : Z[x] →R defined by ϕ(x) = √5. Let I =...
Consider the ring homomorphism ϕ : Z[x] →R defined by ϕ(x) = √5. Let I = {f ∈Z[x]|ϕ(f) = 0}. First prove that I is an ideal in Z[x]. Then find g ∈ Z[x] such that I = (g). [You do not need to prove the last equality.]
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just...
The curried version of let f (x,y,z) = (x,(y,z)) is let f (x,(y,z)) = (x,(y,z)) Just f (because f is already curried) let f x y z = (x,(y,z)) let f x y z = x (y z)
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}....
Let X, Y ⊂ Z and x, y ∈ Z Let A = (X\{x}) ∪ {x}. a) Prove or disprove: A ⊆ X b) Prove or disprove: X ⊆ A c) Prove or disprove: P(X ∪ Y ) ⊆ P(X) ∪ P(Y ) ∪ P(X ∩ Y ) d) Prove or disprove: P(X) ∪ P(Y ) ∪ P(X ∩ Y ) ⊆ P(X ∪ Y )
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z)...
If X, Y and Z are three arbitrary vectors, prove these identities: a. (X×Y).Z = X.(Y×Z) b. X×(Y×Z) = (X.Z)Y – (X.Y)Z c. X.(Y×Z) = -Y.(X×Z)
A lamina with constant density ρ(x, y) = ρ occupies the given region. Find the moments...
A lamina with constant density ρ(x, y) = ρ occupies the given region. Find the moments of inertia Ix and Iy and the radii of gyration and . The part of the disk x2 + y2 ≤ a2 in the first quadrant
Digital Logic Simplify: F = (x’∙ y’∙ z’) + (x’∙ y ∙ z’) + (x ∙...
Digital Logic Simplify: F = (x’∙ y’∙ z’) + (x’∙ y ∙ z’) + (x ∙ y’ ∙ z’) + (x ∙ y ∙ z) F = (x + y + z’) (x + y’ + z’) (x’ + y + z’) (x’ + y’ + z)
Use two different ways to prove X Y + Z = (X + Z)(Y + Z)....
Use two different ways to prove X Y + Z = (X + Z)(Y + Z). a) Use pure algebraic way b) k-maps
For each of the formulas below, state whether it is true or false. a) pX,Y,Z(x,y,z)=pY(y)pZ∣Y(z∣y)pX∣Y,Z(x∣y,z)   ...
For each of the formulas below, state whether it is true or false. a) pX,Y,Z(x,y,z)=pY(y)pZ∣Y(z∣y)pX∣Y,Z(x∣y,z)       Select an option         True         False    b) pX,Y∣Z(x,y∣z)=pX(x)pY∣Z(y∣z)       Select an option         True         False    c) pX,Y∣Z(x,y∣z)=pX∣Z(x∣z)pY∣X,Z(y∣x,z)       Select an option         True         False    d) ∑xpX,Y∣Z(x,y∣z)=1       Select an option         True         False    e) ∑x∑ypX,Y∣Z(x,y∣z)=1       Select an option         True   ...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT