In: Statistics and Probability
A population of values has a normal distribution with μ=77.7μ=77.7 and σ=35.8σ=35.8. A random sample of size n=240n=240 is drawn.
Solution:
a)
P(74.2 < X < 82.6) = P((74.2 - 77.7)/ 35.8) < (x - ) / < (82.6 - 77.7) / 35.8) )
= P(-0.10 < z < 0.14)
= P(z < 0.14) - P(z < -0.10)
= 0.5557 - 0.4602 Using standard normal table,
Probability = 0.0955
b)
n = 240
m = 77.7
= / n = 35.8 / 240 = 2.3109
P( 74.2 < M < 82.6) = P((74.2 - 77.7) / 2.3109<( - m) / < (82.6 - 77.7) / 2.3109))
= P(-1.51 < Z < 2.12)
= P(Z < 2.12) - P(Z < -1.51) Using standard normal table,
= 0.9830 - 0.0655
= 0.9175
Probability = 0.9175