Question

In: Statistics and Probability

THe Golfing Statistics provides data for a portion of the 2010 professional season for the top...

THe Golfing Statistics provides data for a portion of the 2010 professional season for the top 25 golfers.

A) Find the best multiple regression model for predicting earnings/event as a function of the remaining variables.

B) Find the best multiple regression model for predicting average score as a function of the other variables except earning sand events.

Golfing Statistics

Earnings/Event Events Avg. Score GIR (%)* Driving Distance Driving Accuracy (%) Putts/Round
$239,493.68       22           70.37       67.9                 288.4                         60.2             31.82
$177,249.18       28           69.43       69.4                 286.9                         67.9             31.30
$218,619.18       22           70.23       67.1                 276.0                         71.0             31.81
$186,380.08       24           70.46       68.0                 308.5                         56.4             31.81
$209,511.75       20           69.78       68.3                 282.9                         68.5             31.43
$181,987.29       21           70.34       65.1                 299.1                         52.7             31.72
$162,536.13       23           69.92       66.3                 287.8                         65.2             31.68
$174,534.95       21           70.25       65.3                 277.0                         62.4             31.52
$135,353.70       27           70.64       68.0                 291.8                         67.9             32.35
$212,540.82       17           69.93       68.7                 294.2                         61.3             31.55
$297,079.50       12           70.26       69.3                 298.7                         61.3             32.31
$168,904.45       20           69.96       66.0                 291.4                         64.8             31.79
$135,791.58       24           70.21       68.5                 309.8                         55.7             31.73
$133,695.52       23           70.53       68.2                 289.1                         64.8             31.86
$112,192.04       26           70.59       66.5                 279.7                         71.2             31.30
$215,121.67       12           70.22       66.5                 292.4                         60.1             32.29
$183,922.93       14           70.86       62.9                 287.2                         52.0             31.99
$150,251.76       17           70.94       66.2                 300.0                         62.6             32.31
$183,356.69       13           71.13       66.9                 291.7                         67.1             32.06
$130,274.35       17           71.53       62.5                 286.8                         62.7             32.47
$286,285.40        5           69.73       69.4                 308.4                         70.6             32.09
$72,708.05       19           70.79       61.9                 292.1                         56.7             31.50
$99,597.31       13           71.07       64.1                 295.8                         57.2             31.52
$85,557.56        9           71.10       64.1                 290.4                         69.3             31.95
$46,406.25        8           71.24       61.1                 289.9                         65.5             32.31
*GIR: Greens in Regulation

Solutions

Expert Solution

Here i copied all data intoExcel:

A) then go to data analysis-> Regression -> In place Input Y range input vector Earnings/Event -> In place of Input X range input all vector other than Earnings/Event-> In cell of labels tick mark. -> Also tick for residuals,standardies residuals -> Select output range -> Then press ok.

Then we get following output.

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.907422179
R Square 0.82341501
Adjusted R Square 0.764553347
Standard Error 29533.55374
Observations 25
ANOVA
df SS MS F Significance F
Regression 6 73209748917 12201624820 13.98898648 6.49787E-06
Residual 18 15700154337 872230796.5
Total 24 88909903254
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 1437821.623 1347403.762 1.067105246 0.300028237 -1392968.633 4268611.879 -1392968.633 4268611.879
Events -4747.681755 1287.532815 -3.687425828 0.001685195 -7452.687819 -2042.675692 -7452.687819 -2042.675692
Avg. Score -45049.73715 19510.79217 -2.308965047 0.033023094 -86040.39037 -4059.083927 -86040.39037 -4059.083927
GIR (%)* 22416.76093 4698.689378 4.770853981 0.000152822 12545.18087 32288.34099 12545.18087 32288.34099
Driving Distance -3429.311291 995.8982298 -3.443435472 0.002898633 -5521.615828 -1337.006753 -5521.615828 -1337.006753
Driving Accuracy (%) -5413.9034 1450.334544 -3.732865237 0.001522986 -8460.943204 -2366.863596 -8460.943204 -2366.863596
Putts/Round 57949.81073 23557.912 2.459887393 0.024242869 8456.474262 107443.1472 8456.474262 107443.1472
RESIDUAL OUTPUT
Observation Predicted Earnings/Event Residuals Standard Residuals
1 214353.3044 25140.3756 0.982936408
2 195162.1174 -17912.93735 -0.700358602
3 186200.664 32418.51596 1.267496562
4 154109.3185 32270.76149 1.26171967
5 210720.1049 -1208.354893 -0.047244164
6 155801.2113 26186.07871 1.023821225
7 160886.2832 1649.846847 0.064505581
8 176021.9942 -1487.04422 -0.058140337
9 158059.8278 -22706.12781 -0.887762382
10 234355.2581 -21814.43814 -0.85289917
11 285287.2656 11792.23444 0.461051846
12 162796.8305 6107.619451 0.23879522
13 171275.7761 -35484.1961 -1.387358281
14 184136.2119 -50440.69187 -1.972126164
15 94216.33916 17975.70084 0.702812524
16 251264.6734 -36143.00345 -1.413116278
17 176537.2319 7385.698139 0.288765439
18 149926.8976 324.8624437 0.012701446
19 165663.1729 17693.5171 0.691779726
20 94403.02563 35871.32437 1.402494191
21 248276.4951 38008.90487 1.486069144
22 62891.1652 9816.884801 0.383819782
23 113843.7961 -14246.48611 -0.557007982
24 109411.4995 -23853.93946 -0.93263943
25 83751.35566 -37345.10566 -1.460115975

Thus the regression equation is:

Earnings/Event= (-4747.681755)*Event-(45049.73715)*Avg.score+(22416.76093)*GIR-

(3429.3112)*Driving Distance-(5413.9034)*Driving Accuracy+

(57949.81073)*Putts/Round+1437821.623

B) then go to data analysis-> Regression -> In place Input Y range input vector Avg. Score -> In place of Input X range input all vector other than Avg. Score-> In cell of labels tick mark. -> Also tick for residuals,standardies residuals -> Select output range -> Then press ok.

SUMMARY OUTPUT
Regression Statistics
Multiple R 0.857899053
R Square 0.735990785
Adjusted R Square 0.647987713
Standard Error 0.313379912
Observations 25
ANOVA
df SS MS F Significance F
Regression 6 4.927970554 0.821328426 8.363239717 0.000199396
Residual 18 1.767725446 0.098206969
Total 24 6.695696
Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%
Intercept 53.49098873 7.640887788 7.000624825 1.55168E-06 37.43807919 69.54389826 37.43807919 69.54389826
Earnings/Event -5.07228E-06 2.19678E-06 -2.308965047 0.033023094 -9.68753E-06 -4.57024E-07 -9.68753E-06 -4.57024E-07
Events -0.015690723 0.017719097 -0.885526109 0.387550073 -0.052917164 0.021535718 -0.052917164 0.021535718
GIR (%)* -0.01239611 0.074970262 -0.165347028 0.870513709 -0.169902786 0.145110566 -0.169902786 0.145110566
Driving Distance -0.012270372 0.013299185 -0.92264086 0.368397139 -0.040210923 0.015670179 -0.040210923 0.015670179
Driving Accuracy (%) -0.02112577 0.019884223 -1.0624388 0.302083597 -0.062900973 0.020649432 -0.062900973 0.020649432
Putts/Round 0.748378832 0.228860567 3.270020874 0.004253522 0.267560623 1.229197041 0.267560623 1.229197041
RESIDUAL OUTPUT
Observation Predicted Avg. Score Residuals Standard Residuals
1 70.09218605 0.277813953 1.023651831
2 69.76174916 -0.331749164 -1.222385111
3 70.12449473 0.105505271 0.388751761
4 70.15513167 0.30486833 1.123338194
5 69.87096118 -0.090961176 -0.335161622
6 70.38658676 -0.046586763 -0.171656695
7 70.28363962 -0.363639618 -1.339890807
8 70.33848736 -0.088487365 -0.32604645
9 70.73297297 -0.092972967 -0.342574399
10 70.00096642 -0.070966418 -0.261487601
11 70.15672982 0.103270184 0.380516212
12 70.34872736 -0.388727365 -1.432330791
13 70.34449886 -0.134498863 -0.495583485
14 70.53358165 -0.003581651 -0.013197191
15 70.17769894 0.412301057 1.519191993
16 70.69483861 -0.474838611 -1.749622037
17 70.8767429 -0.016742903 -0.061692019
18 70.81804045 0.121959546 0.449380281
19 70.52389203 0.60610797 2.233305876
20 71.244834 0.285165996 1.05074166
21 69.83994034 -0.109940344 -0.40509353
22 70.84867676 -0.058676757 -0.216204294
23 70.73816413 0.331835867 1.22270458
24 71.00458164 0.095418358 0.351584849
25 71.61187656 -0.371876563 -1.370241204

The regression equation :

Avg.score=(-0.015690723)*Event-(5.072*10^(-6))*Earnings/Event-(0.01239611)*GIR-

(0.012270372)*Driving Distance-(0.02112577)*Driving Accuracy+

(0.74837883)*Putts/Round+53.49098873


Related Solutions

The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for two of Vanguard’s mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. [You may find it useful to reference the t table.] Date Energy Healthcare Jan-10 -4.89 -0.11 Feb-10 1.6 0.54 Mar-10 2.27 1.37 Apr-10 2.99 -3.84 May-10 -11.6 -5.16 Jun-10 -5.77 -0.52 Jul-10 8.69 1.52 Aug-10 -6.02 -1.08 Sep-10 10.2 8.24 Oct-10 3.85 2.3 Nov-10 2.82 -2.5 Dec-10 5.55 2 Jan-16...
The following shows a portion of the monthly returns data (in percent) for 2010-2016 for two...
The following shows a portion of the monthly returns data (in percent) for 2010-2016 for two of Vanguard's mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. [You may find it useful to reference the t table.] DATE : ENERGY : HEALTHCARE : (Jan-10, -4.95, -0.19); (Feb-10, 1.8, 0.39); (Mar-10, 2.47, 1.18); (Apr-10, 3.14, -3.8); (May-10, -11.5, -5.09); (Jun-10, -5.95, -0.63); (Jul-10, 8.83, 1.47); (Aug-10, -5.84, -1.1); (Sep-10, 10.13, 8.32); (Oct-10, 3.98, 2.37); (Nov-10, 2.81, -2.41); (Dec-10, 5.71,...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for...
The following table shows a portion of the monthly returns data (in percent) for 2010–2016 for two of Vanguard’s mutual funds: the Vanguard Energy Fund and the Vanguard Healthcare Fund. [You may find it useful to reference the t table.] Date Energy Healthcare Jan-10 −4.86 −0.08 Feb-10 1.90 0.56 ⋮ ⋮ ⋮ Dec-16 0.10 −5.30 SOURCE: www.finance.yahoo.com. Click here for the Excel Data File a. Calculate the sample correlation coefficient rxy. (Round intermediate calculations to at least 4 decimal places...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 4.12 Feb-06 4.44 Mar-06 4.02 Apr-06 4.79 May-06 4.01 Jun-06 3.65 Jul-06 4.07 Aug-06 4.3 Sep-06 5.49 Oct-06 3.6 Nov-06 4.71 Dec-06 3.83 Jan-07 4.14 Feb-07 3.53 Mar-07 3.68 Apr-07 4.19 May-07 3.34 Jun-07 3.51 Jul-07 3.48 Aug-07 3.68 Sep-07 4.96 Oct-07 3.42 Nov-07 4.17 Dec-07 4.25 Jan-08 5.05 Feb-08 3.23 Mar-08 5.34 Apr-08 5.15 May-08 4.58 Jun-08 4.61 Jul-08 4.25 Aug-08...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Index...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Index Month Year Return 1 Jan 2006 3.34 2 Feb 2006 3.13 3 Mar 2006 4.67 4 Apr 2006 3.51 5 May 2006 3.8 6 Jun 2006 5.42 7 Jul 2006 4.6 8 Aug 2006 4.69 9 Sep 2006 4.62 10 Oct 2006 4.28 11 Nov 2006 5.08 12 Dec 2006 3.34 13 Jan 2007 3.91 14 Feb 2007 5.02 15 Mar 2007 3.91 16...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 3.13 Feb-06 4.15 ⋮ ⋮ Dec-10 4.48 Source: Federal Reserve Bank of Dallas. Estimate a linear trend model with seasonal dummy variables to make forecasts for the first three months of 2011. (Round answers to 2 decimal places.) Year Month yˆty^t 2011 Jan 2011 Feb 2011 Mar DATA: Index Month Year Return 1 Jan 2006 3.13 2 Feb 2006 4.15 3 Mar...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date...
Consider a portion of monthly return data (In %) on 20-year Treasury Bonds from 2006–2010. Date Return Jan-06 5.12 Feb-06 4.14 ⋮ ⋮ Dec-10 5.47 Date Return ene-06 5.12 feb-06 4.14 mar-06 4.68 abr-06 5.25 may-06 5.35 jun-06 3.64 jul-06 4.68 ago-06 4.65 sep-06 3.55 oct-06 3.55 nov-06 4.3 dic-06 3.54 ene-07 3.8 feb-07 3.98 mar-07 4.33 abr-07 4.69 may-07 5.37 jun-07 4.74 jul-07 5.17 ago-07 3.22 sep-07 4.97 oct-07 5.13 nov-07 3.35 dic-07 3.86 ene-08 4.06 feb-08 4.64 mar-08...
A professional baseball players contract is set to expire at the conclusion of the current season....
A professional baseball players contract is set to expire at the conclusion of the current season. He believes that his performance garners a substantial increase from his current salary. This desire has prompted the club to __________ during the season to satisfy his contract desires and hopefully prevent him from entering free agency. Go through arbitration Hire a mediator Trade him away Enter negotiation talks The practice of hazing on sports teams would classify as ________ Crimes against Government Crimes...
Statistics concepts for engineering management: The data in the table provides: College GPA, High School GPA,...
Statistics concepts for engineering management: The data in the table provides: College GPA, High School GPA, SAT total score, and number of letters of reference.    a. Generate a model for college GPA as a function of the other three variables.    b. Is this model useful? Justify your conclusion.    c. Are any of the variables not useful predictors? Why? CGPA   HSGPA   SAT   REF 2.04 2.01   1070   5 2.56 3.4   1254   6 3.75 3.68   1466   6 1.1 1.54   706  ...
1. In a tube of Thioglycollate broth, _ would grow at the very top portion of...
1. In a tube of Thioglycollate broth, _ would grow at the very top portion of the tube while ___ would grow throughout the tube. B. Obligate anaerobes, obligate aerobes C. Microaerophiles, facultative anaerobes D. Obligate aerobes, facultative anaerobes 2. Which of the following does acheive sterilization? A. freezing B. boiling C, ethylene oxide D. none of the above 3. All of the following are modes of action of antiviral drugs except __ A. inhibition of peptidoglycan synthesis b. inhibition...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT