In: Statistics and Probability
Determine the critical value. Remember:
Group of answer choices
Estimating the mean at 95% confidence, n=25, s=4.5
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
Estimating the mean at 95% confidence, n=15, sigma=4.5
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
Estimating the proportion at 95% confidence, n=500, pbar=.24
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
Estimating the mean at 90% confidence, n=15, s=300
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
Estimating the proportion at 90% confidence, n=100, pbar=.3
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
Estimating the mean at 99% confidence, n=11, s=0.77
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
Estimating the mean at 99% confidence, n=11, sigma=0.77
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
Estimating the mean at 99% confidence, n=500, s=0.77
[ Choose ] 2.576 1.645 3.17 1.96 2.586 1.76 2.06
1)sample std dev ,    s =    4.5000
Sample Size ,   n =    25
degree of freedom=   DF=n-1=   24
critical t value, t* =    ±   2.06
[Excel formula =t.inv(α/no. of tails,df) ]  
   
2)
population std dev ,    σ =    4.5000
Sample Size ,   n =    15
critical z value, z* =     
1.9600   [Excel formula =NORMSINV(α/no. of tails)
]
3)Sample Size,   n =   
500  
          
Sample Proportion ,    p̂ = 0.24
             
  
critical z value = 1.96 [excel formula
=NORMSINV(α/2)]
4)
sample std dev ,    s =   
300.0000      
Sample Size ,   n =    15  
   
          
   
degree of freedom=   DF=n-1=   14  
   
          
         
critical t value, t* =      
1.7613   [Excel formula =t.inv(α/no. of tails,df)
]  
5)
Sample Size,   n =    100  
   
          
   
Sample Proportion ,    p̂ = 0.3   
          
   
critical z value =    1.645   [excel formula
=NORMSINV(α/2)]  
6)
sample std dev ,    s =   
0.7700      
Sample Size ,   n =    11  
      
          
   
degree of freedom=   DF=n-1=   10  
   
          
      
critical t value, t* =       3.17 [Excel
formula =t.inv(α/no. of tails,df) ]  
......
7)
population std dev ,    σ =   
0.7700  
Sample Size ,   n =    11  
  
critical z value, z* =      2.576 [Excel
formula =NORMSINV(α/no. of tails) ]
..
8)
sample std dev ,    s =    0.7700
Sample Size ,   n =    500
      
degree of freedom=   DF=n-1=   499
       
critical t value, t* =     2.586 [Excel formula
=t.inv(α/no. of tails,df) ]  
...
Please revert back in case of any doubt.
Please upvote. Thanks in advance.