Question

In: Statistics and Probability

Determine the critical value. Remember: When estimating the mean, if the population standard deviation (σ) is...

Determine the critical value. Remember:

  • When estimating the mean, if the population standard deviation (σ) is known, use z.
  • When estimating the proportion, use z.
    • Find z using = -norm.s.inv((1-confidence level)/2)
  • When estimating the mean, if the population standard deviation (σ, sigma) is unknown--meaning that you have a sample standard deviation (s)--use t.
    • Find t using =t.inv.2t(1-confidence level, n-1)

Group of answer choices

Estimating the mean at 95% confidence, n=25, s=4.5

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Estimating the mean at 95% confidence, n=15, sigma=4.5

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Estimating the proportion at 95% confidence, n=500, pbar=.24

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Estimating the mean at 90% confidence, n=15, s=300

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Estimating the proportion at 90% confidence, n=100, pbar=.3

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Estimating the mean at 99% confidence, n=11, s=0.77

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Estimating the mean at 99% confidence, n=11, sigma=0.77

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Estimating the mean at 99% confidence, n=500, s=0.77

      [ Choose ]            2.576            1.645            3.17            1.96            2.586            1.76            2.06      

Solutions

Expert Solution

1)sample std dev ,    s =    4.5000
Sample Size ,   n =    25

degree of freedom=   DF=n-1=   24

critical t value, t* =    ±   2.06 [Excel formula =t.inv(α/no. of tails,df) ]      

2)

population std dev ,    σ =    4.5000
Sample Size ,   n =    15
critical z value, z* =      1.9600   [Excel formula =NORMSINV(α/no. of tails) ]

3)Sample Size,   n =    500  
          
Sample Proportion ,    p̂ = 0.24
                
critical z value = 1.96 [excel formula =NORMSINV(α/2)]

4)

sample std dev ,    s =    300.0000      
Sample Size ,   n =    15      
              
degree of freedom=   DF=n-1=   14      
                    
critical t value, t* =       1.7613   [Excel formula =t.inv(α/no. of tails,df) ]  

5)

Sample Size,   n =    100      
              
Sample Proportion ,    p̂ = 0.3   
              
critical z value =    1.645   [excel formula =NORMSINV(α/2)]  

6)

sample std dev ,    s =    0.7700      
Sample Size ,   n =    11         
              
degree of freedom=   DF=n-1=   10      
                 
critical t value, t* =       3.17 [Excel formula =t.inv(α/no. of tails,df) ]  

......

7)

population std dev ,    σ =    0.7700  
Sample Size ,   n =    11  
  
critical z value, z* =      2.576 [Excel formula =NORMSINV(α/no. of tails) ]

..

8)

sample std dev ,    s =    0.7700
Sample Size ,   n =    500
      
degree of freedom=   DF=n-1=   499
      
critical t value, t* =     2.586 [Excel formula =t.inv(α/no. of tails,df) ]  

...



Please revert back in case of any doubt.

Please upvote. Thanks in advance.



Related Solutions

A population has a mean of μ = 70 and a standard deviation of σ =...
A population has a mean of μ = 70 and a standard deviation of σ = 12 For the same population, find the score (X value) that corresponds to each of the following z-scores. z = 0.50: X=_____                        z = 1.50: X=_____      z = -2.50: X=_____ z = -0.25: X=_____                      z = -0.50: X=_____    z = 1.25: X=_____ A sample has a mean of M = 30 and a standard deviation of s = 7. Find the z-score...
A (very large) population has a mean µ of 800 and a standard deviation σ of...
A (very large) population has a mean µ of 800 and a standard deviation σ of 25. What is the probability that a sample mean x will be within ± 5 units of the population mean for each of the following sample sizes? a. n = 50 b. n = 75 c. n = 100
A (very large) population has a mean µ of 800 and a standard deviation σ of...
A (very large) population has a mean µ of 800 and a standard deviation σ of 25. What is the probability that a sample mean x will be within ± 5 units of the population mean for each of the following sample sizes? a. n = 50 b. n = 75 c. n = 100
1. The point estimator for the population standard deviation σ is ___ and the point estimator for the population mean μ is ____.
  1. The point estimator for the population standard deviation σ  is ___ and the point estimator for the population mean μ is ____. 2. To estimate the value of a population parameter using a sample, we would calculate... a) a simple random sample, b) a sample statistic, c) a test statistic, d) or both a and b 3. A simple random sample from a finite data set must meet which condition(s)/requirements? a) you may only sample without replacement; sampling with...
Determine the critical values for these tests of a population standard deviation. ​(a) A​ right-tailed test...
Determine the critical values for these tests of a population standard deviation. ​(a) A​ right-tailed test with 17 degrees of freedom at the α equals = 0.1 level of significance ​(b) A​ left-tailed test for a sample of size n equals = 28 at the alpha α = 0.01 level of significance ​(c) A​ two-tailed test for a sample of size n = 22 at the alpha α = 0.1 level of significance
A population has mean μ = 16 and standard deviation σ = 1.5. A random sample...
A population has mean μ = 16 and standard deviation σ = 1.5. A random sample of size n = 49 is selected. What is the probability that the sample mean is greater than 16.8? I got 3.73 for z-value. Please help
A normal population has mean μ = 55 and standard deviation σ = 8 . What...
A normal population has mean μ = 55 and standard deviation σ = 8 . What is the 85 th percentile of the population?
For a population with a normal distribution with mean 23.5 and a standard deviation 2.6​, determine...
For a population with a normal distribution with mean 23.5 and a standard deviation 2.6​, determine the following. ​ (a) About​ 68% of the population lies between what​ limits? ​ (b) About​ 95% of the population lies between what​ limits? ​(c) About​ 99.7% of the population lies between what​ limits
Determine the critical values for these tests of a population standard deviation. ​1.A​ right-tailed test with...
Determine the critical values for these tests of a population standard deviation. ​1.A​ right-tailed test with 19 degrees of freedom at the a=0.1 level of significance ​2. A​ left-tailed test for a sample of size n= 23 at the a= 0.01 level of significance ​2. A​ two-tailed test for a sample of size n= 30 at the a=0.01 level of significance
A normally distributed population has a mean of 74 and a standard deviation of 14. Determine...
A normally distributed population has a mean of 74 and a standard deviation of 14. Determine the probability that a random sample of size 24 has an average between 71 and 80. Round to four decimal places.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT