In: Statistics and Probability
A (very large) population has a mean µ of 800 and a standard deviation σ of 25. What is the probability that a sample mean x will be within ± 5 units of the population mean for each of the following sample sizes?
a. n = 50
b. n = 75
c. n = 100
Solution :
Given that,
mean = = 800
standard deviation = = 25
a)
n = 50
= = 800
= / n = 25 / 50 = 3.5355
P(795 < < 805) = 1 - (P((795 - 800) /3.5355 <( - ) / < (805 - 800) / 3.5355)))
=1 - ( P(-1.41 < Z <1.41))
= 1 - (P(Z < 1.41) - P(Z < -1.41)) Using standard normal table,
= 1 - (0.9207 - 0.0793)
= 1 - 0.8414
Probability = 0.1586
b)
n = 75
= = 800
= / n = 25 / 75 = 2.8868
P(795 < < 805) = 1 - (P((795 - 800) /2.8868 <( - ) / < (805 - 800) / 2.8868)))
=1 - ( P(-1.73 < Z <1.73))
= 1 - (P(Z < 1.73) - P(Z < -1.73)) Using standard normal table,
= 1 - (0.9582 - 0.0418)
= 1 - 0.9164
Probability = 0.0836
c)
n = 100
= = 800
= / n = 25 / 100 = 2.5
P(795 < < 805) = 1 - (P((795 - 800) /2.5 <( - ) / < (805 - 800) / 2.5)))
=1 - ( P(-2 < Z < 2))
= 1 - (P(Z < 2) - P(Z < -2)) Using standard normal table,
= 1 - (0.9772 - 0.0228)
= 1 - 0.8414
Probability = 0.9544