Question

In: Mechanical Engineering

Fluid enters a tube with a flow rate of 0.021 kg/s and an inlet temperature of...

Fluid enters a tube with a flow rate of 0.021 kg/s and an inlet temperature of 20°C. The tube, which has a length of 6.280 m and diameter of 15 mm, has a surface temperature of 30°C. Determine the heat transfer rate to the fluid if it is water. The heat transfer rate to the fluid, in W is?

Solutions

Expert Solution


Related Solutions

Water enters a circular tube whose walls are maintained at constant temperature at a specified flow rate and temperature.
Water enters a circular tube whose walls are maintained at constant temperature at a specified flow rate and temperature. To compute the rate of heat transfer between the walls and the fluid, using the flow Nusselt number the following temperature difference is used;                                                                 a.   The difference between the inlet and outlet water bulk temperature   b.   The difference between the inlet water bulk temperature and the tube wall temperature c.   The log mean temperature...
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h....
Water at 15°C enters a tube of 2 cm of diameter with flow rate 3953 kg/h. Assume the ratio L/D >10, and the wall temperature is constant at 80◦C. The outlet temperature is 50°C The properties of water at the film temperature are density rho = ? = 985 ?/?3, specific heat ?p = 4180 ?/?, conductivity ? = 0.651 ?/?, dynamic viscosity mu= ?? = 4.71 × 10−4 ?/?, At the wall temperature of 80°C we have dynamic viscosity...
Air enters a thin-walled, 5-mm diameter, 2-m-long tube at a uniform inlet temperature of 100°C. A...
Air enters a thin-walled, 5-mm diameter, 2-m-long tube at a uniform inlet temperature of 100°C. A constant heat flux is applied to the air from the tube surface. The mean temperature of air at halfway along the tube (at 1 m length) is reported as 126°C. If the tube surface temperature at the exit is 160°C and the local heat transfer coefficient at the exit is 29.5 W/m^2K, determine a) the applied heat flux, b) the rate of energy increase...
Atmospheric air enters the heated section of a circular tube at a flow rate of .005...
Atmospheric air enters the heated section of a circular tube at a flow rate of .005 kg/s and a temperature of 20 degrees Celsius. The tube is of diameter D = 50 mm, and fully developed conditions with h = 25 W/m^2K exist over the entire length of L = 3m. a) For the case of the uniform surface heat flux at q''s = 1000 W/m2 , determine the total heat transfer rate q and the mean temperature of the...
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters...
Consider the following combined cycle. The mass flow rate of air is 73 kg/s. Air enters the compressor at state 1 with Patm =1 atm and Tamb = 20°C. The compressor has a pressure ratio of 7.5 and an efficiency ?c = 0.85. Air enters the combustor and is heated to a temperature TH = 1250°C. The turbine has an efficiency of ?t,1 = 0.87. The air leaving the turbine enters the steam boiler where it transfers heat to the...
Nitrogen (N2), at 300 K, 1 bar with a mass flow rate of 1 kg/s enters...
Nitrogen (N2), at 300 K, 1 bar with a mass flow rate of 1 kg/s enters an insulated mixing chamber and mixes with carbon dioxide (CO2) entering as a separate stream at 500 K, 1 bar with a mass flow rate of 0.5 kg/s. The mixture exits at 1 bar. Assuming ideal gas behavior, for steady-state operation, determine (a) the molar analysis (i.e., the molar flow rate for each gas) of the exiting mixture, (b) the exit mixture temperature, and...
Saturated vapor steam enters a well-insulated turbine at 300oC. The mass flow rate is 1.00 kg/s...
Saturated vapor steam enters a well-insulated turbine at 300oC. The mass flow rate is 1.00 kg/s and the exit pressure is 50 kPa. Determine the final state of the steam if the turbine power output is 400 kW. a). What is the amount of heat transfer in or out the turbine ? b). Explain or show your calculation for your answer in a).    c). What is the substance that you use to look for pure substance properties ? d)....
4. A steam turbine has an inlet flow of 3 kg/s at 3.5 MPa and 450...
4. A steam turbine has an inlet flow of 3 kg/s at 3.5 MPa and 450 C with a velocity of 140 m/s. the exit of the turbine is 800 kPa and 300 C at a very low velocity. Calculate a.) the work produced in (MW) by the turbine, and b.) The entropy generated in (kW/k)
1. Three tanks are interconnected non-interactively. The fluid enters the first tank at the flow rate...
1. Three tanks are interconnected non-interactively. The fluid enters the first tank at the flow rate q and the third leaves the tank at flow rate q3. The speed of the fluid coming out of the third tank is fixed by means of a pump. It is maintained. According to this, a) Mathematically the effect of the change in the velocity of the fluid entering the first tank on the liquid height in the third tank Please express. (The areas...
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter...
Water flowing at a rate of 0.667 kg/s (Cp = 4.192 kJ/kg. K) enters a counter current heat exchanger at 318 K and is heated by an oil stream entering at 393 K at a rate of 2.85 kg/s (Cp=1.89 kJ/kg. K). The overall U=290 W/m2. K and the area A=20 m2. Calculate the heat transfer rate and the exit water temperature.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT