Question

In: Mechanical Engineering

Air enters a thin-walled, 5-mm diameter, 2-m-long tube at a uniform inlet temperature of 100°C. A...

Air enters a thin-walled, 5-mm diameter, 2-m-long tube at a uniform inlet temperature of 100°C. A constant heat flux is applied to the air from the tube surface. The mean temperature of air at halfway along the tube (at 1 m length) is reported as 126°C. If the tube surface temperature at the exit is 160°C and the local heat transfer coefficient at the exit is 29.5 W/m^2K, determine

a) the applied heat flux,

b) the rate of energy increase in air from the entrance to the exit of the tube,

c) the mass flow rate of air in the tube,

d) the local heat transfer coefficient at halfway along the tube (at 1 m length),

e) the surface temperature of the tube at halfway along the tube (at 1 m length).

Assume steady-state conditions and constant air properties.

Solutions

Expert Solution


Related Solutions

A thin-walled tube with a diameter of 6 mm and length of 20 m is used...
A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory in a nearby building for analysis. The gas enters the tube at 200°C and with a mass flow rate of 0.001 kg/s. Autumn winds at a temperature of 15°C blow directly across the tube at a velocity of 7 m/s. Assume the thermophysical properties of the exhaust gas are those of air. (a)...
A thin-walled tube with a diameter of 6 mm and length of 20 m is used...
A thin-walled tube with a diameter of 6 mm and length of 20 m is used to carry exhaust gas from a smoke stack to the laboratory in a nearby building for analysis. The gas enters the tube at 200°C and with a mass flow rate of 0.005 kg/s. Autumn winds at a temperature of 15°C blow directly across the tube at a velocity of 5 m/s. Assume the thermophysical properties of the exhaust gas are those of air. (a)...
Air, at p = 1 atm and a temperature of 60 ° C enters a thin-walled...
Air, at p = 1 atm and a temperature of 60 ° C enters a thin-walled (d = 5.0 mm) and long (l = 3 m) tube. A constant thermal flow is applied to the air from the tube walls. The mass air flow is 1.5x10^(-04) kg / s. If the temperature on the surface of the tube at its outlet is 120 ° C, determine the rate of heat transfer entering the tube. Use the air properties for 400...
A cylinder 100 mm in diameter and 80 mm long with an initial temperature of 527...
A cylinder 100 mm in diameter and 80 mm long with an initial temperature of 527 C is suddenly exposed to water at 27 C giving a convective heat transfer coefficient of 400 W/m2-K. Determine the temperature at the center of the cylinder after 10 minutes. Assume density is 8050 kg/m3, specific heat is 536 kJ/kg-K, and thermal conductivity is 18.6 W/m-K. **** Not lumped Capacitance Problem. ****
Fluid enters a tube with a flow rate of 0.021 kg/s and an inlet temperature of...
Fluid enters a tube with a flow rate of 0.021 kg/s and an inlet temperature of 20°C. The tube, which has a length of 6.280 m and diameter of 15 mm, has a surface temperature of 30°C. Determine the heat transfer rate to the fluid if it is water. The heat transfer rate to the fluid, in W is?
Air at 60oC and 1 atm enters a smooth tube having a diameter of 2 cm...
Air at 60oC and 1 atm enters a smooth tube having a diameter of 2 cm and length of 10 cm. The air velocity is 40 m/s: 1- What constant heat flux must be applied at the tube surface to result in an air temperature rise of 5oC? 2- What average wall temperature would be necessary for this case? Answer: (1) qs = 11841W/m2    (2) Tw = 97oC
a .25 mm diameter wire .2 m long is to be held at 1035 deg C....
a .25 mm diameter wire .2 m long is to be held at 1035 deg C. The wires surface is black. how much electrical power is required to maintain it's temp? The surrounding air and room are both at 20 deg C. The room is also assumed to be black . Find : Raleigh number, nusselt number, HTC and power required to maintain temperature.
A thin-walled capillary tube (diameter=5mm, length=1m) carries steam at 100degreesC The capillary is covered by a...
A thin-walled capillary tube (diameter=5mm, length=1m) carries steam at 100degreesC The capillary is covered by a later of insulation (thermal conductivity=0.10W/mK) and thickness delta. Assume that the heat transfer coefficient in the outside ir is 25W/m2K and its temp is 25degreesC. Compute and plot the steady state heat loss from the tube as a function of the thickness of insulation used for the range 0<delta<2cm
6. Water steadily enters an extremely thin 100 m stainless steel pipe with a diameter of...
6. Water steadily enters an extremely thin 100 m stainless steel pipe with a diameter of 10 cm at a mass flow rate of 31.4 kg/s at 80 °C at 100 kPa. The convection heat transfer coefficient between the ambient air (20 °C) and water pipe is ℎ = 120 ?/(?^2)?. You can ignore the heat loss by radiation and assume the temperature of the water and pipe surface are almost same but the temperature Difference is very small but...
Air flows in a pipe with a diameter, D=50 mm. The inlet conditions are: M1 =...
Air flows in a pipe with a diameter, D=50 mm. The inlet conditions are: M1 = 3; total pressure, P01 = 1000 kPa absolute; and temperature, T1 = 550 K. The friction coefficient is, f = 0.004. The exit Mach number decreases with the length of the pipe. Plot the following while the exit Mach number to be changed from 2.5 to 0.99 with decrements of ?M=0.01: a) L, length of the pipe that is going to give the desired...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT