In: Statistics and Probability
Coca-Cola Revenues ($ millions), 2005–2010 | ||||||
Quarter | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
Qtr1 | 5,200 | 5,117 | 6,075 | 7,380 | 7,150 | 7,800 |
Qtr2 | 6,304 | 6,465 | 7,705 | 9,045 | 8,220 | 8,659 |
Qtr3 | 6,031 | 6,410 | 7,662 | 8,305 | 8,025 | 8,411 |
Qtr4 | 5,545 | 5,905 | 7,303 | 7,040 | 7,480 | 10,479 |
(a-1) Use MegaStat or Minitab to deseasonalize
Coca-Cola’s quarterly data. (Round your answers to 3
decimal places.)
1 | 2 | 3 | 4 | |
2005 | ||||
2006 | ||||
2007 | ||||
2008 | ||||
2009 | ||||
2010 | ||||
mean | ||||
(a-2) State the adjusted four quarterly indexes.
(Round your answers to 3 decimal
places.)
Q1 | Q2 | Q3 | Q4 |
(a-3) What is the trend model for the
deseasonalized time series? (Round your answers to 2
decimal places.)
yt
= xt +
(b) State the model found when performing a
regression using seasonal binaries. (A negative value
should be indicated by a minus sign. Round your answers to 4
decimal places.)
yt
= + t + Q1
+ Q2 + Q3
(c) Use the regression equation to make a
prediction for each quarter in 2011. (Enter your answers in
millions rounded to 3 decimal places.)
Quarter | Predicted |
Q1 | |
Q2 | |
Q3 | |
Q4 | |
(a)
Centered | |||||||
Moving | Ratio to | Seasonal | 2005 | ||||
t | Year | Quarter | 2005 | Average | CMA | Indexes | Deseasonalized |
1 | 1 | 1 | 5,200 | 0.927 | 5,609.9 | ||
2 | 1 | 2 | 6,304 | 1.087 | 5,801.2 | ||
3 | 1 | 3 | 6,031 | 5759.625 | 1.047 | 1.047 | 5,762.0 |
4 | 1 | 4 | 5,545 | 5769.375 | 0.961 | 0.940 | 5,900.7 |
5 | 2 | 1 | 5,117 | 5836.875 | 0.877 | 0.927 | 5,520.4 |
6 | 2 | 2 | 6,465 | 5929.250 | 1.090 | 1.087 | 5,949.4 |
7 | 2 | 3 | 6,410 | 6094.000 | 1.052 | 1.047 | 6,124.1 |
8 | 2 | 4 | 5,905 | 6368.750 | 0.927 | 0.940 | 6,283.8 |
9 | 3 | 1 | 6,075 | 6680.250 | 0.909 | 0.927 | 6,553.9 |
10 | 3 | 2 | 7,705 | 7011.500 | 1.099 | 1.087 | 7,090.5 |
11 | 3 | 3 | 7,662 | 7349.375 | 1.043 | 1.047 | 7,320.3 |
12 | 3 | 4 | 7,303 | 7680.000 | 0.951 | 0.940 | 7,771.4 |
13 | 4 | 1 | 7,380 | 7927.875 | 0.931 | 0.927 | 7,961.8 |
14 | 4 | 2 | 9,045 | 7975.375 | 1.134 | 1.087 | 8,323.6 |
15 | 4 | 3 | 8,305 | 7913.750 | 1.049 | 1.047 | 7,934.6 |
16 | 4 | 4 | 7,040 | 7781.875 | 0.905 | 0.940 | 7,491.6 |
17 | 5 | 1 | 7,150 | 7643.750 | 0.935 | 0.927 | 7,713.6 |
18 | 5 | 2 | 8,220 | 7663.750 | 1.073 | 1.087 | 7,564.4 |
19 | 5 | 3 | 8,025 | 7800.000 | 1.029 | 1.047 | 7,667.1 |
20 | 5 | 4 | 7,480 | 7936.125 | 0.943 | 0.940 | 7,959.8 |
21 | 6 | 1 | 7,800 | 8039.250 | 0.970 | 0.927 | 8,414.9 |
22 | 6 | 2 | 8,659 | 8462.375 | 1.023 | 1.087 | 7,968.4 |
23 | 6 | 3 | 8,411 | 1.047 | 8,035.9 | ||
24 | 6 | 4 | 10,479 | 0.940 | 11,151.2 |
Calculation of Seasonal Indexes | |||||
1 | 2 | 3 | 4 | ||
1 | 1.047 | 0.961 | |||
2 | 0.877 | 1.090 | 1.052 | 0.927 | |
3 | 0.909 | 1.099 | 1.043 | 0.951 | |
4 | 0.931 | 1.134 | 1.049 | 0.905 | |
5 | 0.935 | 1.073 | 1.029 | 0.943 | |
6 | 0.970 | 1.023 | |||
mean: | 0.925 | 1.084 | 1.044 | 0.937 | 3.990 |
adjusted: | 0.927 | 1.087 | 1.047 | 0.940 | 4.000 |
y = 156.81x + 5284.7
(b) yt = 5,159.4000 + 152.3286 t - 381.3476 Q1 + 745.6571 Q2 + 334.3286 Q3
(c)
Quarter | Predicted |
Q1 | 8586.267 |
Q2 | 9865.600 |
Q3 | 9606.600 |
Q4 | 9424.600 |