Question

In: Advanced Math

find the projection vector of the vector v = (2,3,5) onto the plane z = 2x...

find the projection vector of the vector v = (2,3,5) onto the plane z = 2x + 3y -1

Solutions

Expert Solution


Related Solutions

1,Let v=(1,1)v=(1,1) be a vector in the xy-plane. Find a planar vector w which has length...
1,Let v=(1,1)v=(1,1) be a vector in the xy-plane. Find a planar vector w which has length 2√2, has a positive first component and is perpendicular to v. W=(,) 2, Find the points where the line l(t)=(1−t,1+t,t) intersects the plane z=x+y (Give the answer in the form of comma separated list of points like (*,*,*), (*,*,*)
Check the true statements below: A. The orthogonal projection of y onto v is the same...
Check the true statements below: A. The orthogonal projection of y onto v is the same as the orthogonal projection of y onto cv whenever c≠0. B. If the columns of an m×n matrix A are orthonormal, then the linear mapping x→Ax preserves lengths. C. If a set S={u1,...,up} has the property that ui⋅uj=0 whenever i≠j, then S is an orthonormal set. D. Not every orthogonal set in Rn is a linearly independent set. E. An orthogonal matrix is invertible.
A.The surfaces intersect in a space curve C. Determine the projection of C onto the xy-plane....
A.The surfaces intersect in a space curve C. Determine the projection of C onto the xy-plane. x+4y+5z=5 x+y−4z=5 B.The surfaces intersect in a space curve C. Determine the projection of C onto the xy-plane. 2x^2+6y^2+(z−2)^2=2 2x^2+6y^2=z^2 C. The surfaces intersect in a space curve C. Determine the projection of C onto the xy-plane. x^2+y^2+z=2 2x^2+3y^2=z
Write a MATLAB function [p, z] = proj(A,b) that computes the projection of b onto the...
Write a MATLAB function [p, z] = proj(A,b) that computes the projection of b onto the Column Space of an m × n matrix A. Your program should allow for the possibility that the columns of A are not linearly independent. In order for the program to work, you will need to create a basis for Col A.
Find the flux of the vector field V(x, y, z) = 7xy2i + 2x2yj + z3k...
Find the flux of the vector field V(x, y, z) = 7xy2i + 2x2yj + z3k out of the unit sphere.
2a. Find the orthogonal projection of [9,40,-29,4] onto the subspace of R4 spanned by [1,6,5,6] and...
2a. Find the orthogonal projection of [9,40,-29,4] onto the subspace of R4 spanned by [1,6,5,6] and [5,1,5,5]. Answer choices: [2,14,-15,7] [-32,13,-10,7] [0,9,12,6] [-5,-2,3,2] [-12,0,-9,-9] [-16,20,0,4] [27,29,29,21] [-3,1,2,7] [-23,7,-3,-9] [-15,5,-15,30] 2b. Find the orthogonal projection of [17,18,-10,24] onto the subspace of R4 spanned by [2,7,1,6] and [3,7,3,4]. Answer choices: [-34,-22,-29,-34] [-6,4,-2,0] [-12,36,21,33] [3,21,-3,24] [7,-14,-12,1] [5,3,32,45] [14,32,12,11] [9,13,18,11] [20,2,-3,19] [-2,-6,1,-7]
Using least squares, find the orthogonal projection of u onto the subspace of R4 spanned by...
Using least squares, find the orthogonal projection of u onto the subspace of R4 spanned by the vectors v1, v2, and v3, where u  =  (6, 3, 9, 6), v1  =  (2, 1, 1, 1), v2  =  (1, 0, 1 ,1), v3  =  (-2, -1, 0, -1).
Find the vector and parametric equations for the plane. The plane that contains the lines r1(t)...
Find the vector and parametric equations for the plane. The plane that contains the lines r1(t) = <6, 8, 8,> + t<-2, 9, 6> and r2 = <6, 8, 8> + t<5, 1, 7>.
A) Given a vector electric field: E i = x̅100e−γ z V/m                       Find the associated magnetic...
A) Given a vector electric field: E i = x̅100e−γ z V/m                       Find the associated magnetic field. B) If this field is normally incident on a uniform lossy medium with Er = 3.0, tan δ = 0.1, and μ = μ0    initially propagating in air, find bot h the reflection and transmission coefficients.
The reflection of the plane 2x-3y+4z-3=0 in the plane x-y+z-3=0 is the place
The reflection of the plane 2x-3y+4z-3=0 in the plane x-y+z-3=0 is the place
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT