Question

In: Statistics and Probability

5. Let n = 60, not a product of distinct prime numbers. Let Bn= the set...

5. Let n = 60, not a product of distinct prime numbers. Let Bn= the set of all positive
divisors of n. Define addition and multiplication to be lcm and gcd as well. Now show
that Bn cannot consist of a Boolean algebra under those two operators.
Hint: Find the 0 and 1 elements first. Now find an element of Bn whose complement
cannot be found to satisfy both equalities, no matter how we define the complement
operator.

Solutions

Expert Solution

Thank you.


Related Solutions

Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n. Indicate in your proof the step(s) for which you invoke this lemma.
Let S be a set of n numbers. Let X be the set of all subsets...
Let S be a set of n numbers. Let X be the set of all subsets of S of size k, and let Y be the set of all ordered k-tuples (s1, s2,   , sk) such that s1 < s2 <    < sk. That is, X = {{s1, s2,   , sk} | si  S and all si's are distinct}, and Y = {(s1, s2,   , sk) | si  S and s1 < s2 <    < sk}. (a) Define a one-to-one correspondence f : X → Y. Explain...
Show by induction that if a prime p divides a product of n numbers, then it...
Show by induction that if a prime p divides a product of n numbers, then it divides at least one of the numbers. Number theory course. Please, I want a clear and neat and readable answer.
For the following exercises, find the number of subsets in each given set. A set containing 5 distinct numbers, 4 distinct letters, and 3 distinct symbols
For the following exercises, find the number of subsets in each given set.A set containing 5 distinct numbers, 4 distinct letters, and 3 distinct symbols
. Let xj , j = 1, . . . n be n distinct values. Let...
. Let xj , j = 1, . . . n be n distinct values. Let yj be any n values. Let p(x) = c1 + c2x + c3x 2 + · · · + cn x ^n−1 be the unique polynomial that interpolates the data (xj , yj ), j = 1, . . . , n (Vandermonde approach). (a) Remember that (xj , yj ), j = 1, . . . , n are given. Derive the n...
Java program Prime Numbers A prime number is a natural number which has exactly two distinct...
Java program Prime Numbers A prime number is a natural number which has exactly two distinct natural number divisors: 1 and itself. For example, the first four prime numbers are: 2, 3, 5 and 7. Write a java program which reads a list of N integers and prints the number of prime numbers in the list. Input: The first line contains an integer N, the number of elements in the list. N numbers are given in the following lines. Output:...
Let the cardinal number of N, the set of all natural numbers, be א0. Prove that...
Let the cardinal number of N, the set of all natural numbers, be א0. Prove that the product set N × N = {(m,n);m ∈ N,n ∈ N} has the same cardinal number. Further prove that Q+, the set of all positive rational numbers, has the cardinal number N_0. Hint: You may use the formula 2^(m−1)(2n − 1) to define a function from N × N to N, see the third example on page 214 of the textbook.
An array A of n distinct numbers are said to be unimodal if there exists an...
An array A of n distinct numbers are said to be unimodal if there exists an index k, 1 ≤ k ≤ n, such that A[1] < A[2] < · · · < A[k − 1] < A[k] and A[k] > A[k + 1] > · · · > A[n]. In other words, A has a unique peak and are monotone on both sides of the peak. Design an efficient algorithm that finds the peak in a unimodal array of...
Given an array A of n distinct real numbers, we say that a pair of numbers...
Given an array A of n distinct real numbers, we say that a pair of numbers i, j ∈ {0, . . . , n−1} form an inversion of A if i < j and A[i] > A[j]. Let inv(A) = {(i, j) | i < j and A[i] > A[j]}. Answer the following: (a) How small can the number of inversions be? Give an example of an array of length n with the smallest possible number of inversions. (b)...
Given an array A of n distinct numbers, we say that a pair of numbers i,...
Given an array A of n distinct numbers, we say that a pair of numbers i, j ∈ {0, . . . , n − 1} form an inversion of A if i < j and A[i] > A[j]. Let inv(A) = {(i, j) | i < j and A[i] > A[j]}. Define the Inversion problem as follows: • Input: an array A consisting of distinct numbers. • Output: the number of inversions of A, i.e. |inv(A)|. Answer the following:...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT