Question

In: Advanced Math

Let p and q be any two distinct prime numbers and define the relation a R...

Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation.

you may use the following lemma: If p is prime and p|mn, then p|m or p|n. Indicate in your proof the step(s) for which you invoke this lemma.

Solutions

Expert Solution


Related Solutions

5. Let n = 60, not a product of distinct prime numbers. Let Bn= the set...
5. Let n = 60, not a product of distinct prime numbers. Let Bn= the set of all positive divisors of n. Define addition and multiplication to be lcm and gcd as well. Now show that Bn cannot consist of a Boolean algebra under those two operators. Hint: Find the 0 and 1 elements first. Now find an element of Bn whose complement cannot be found to satisfy both equalities, no matter how we define the complement operator.
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by...
Let S = {1,2,3,4} and let A = SxS Define a relation R on A by (a,b)R(c,d) iff ad = bc Write out each equivalence class (by "write out" I mean tell me explicitly which elements of A are in each equivalence class) Hint: |A| = 16 and there are 11 equivalence classes, so there are several equivalence classes that consist of a single element of A.
24. Show that (x ^p) − x has p distinct zeros in Zp, for any prime...
24. Show that (x ^p) − x has p distinct zeros in Zp, for any prime p. Conclude that (x ^p) − x = x(x − 1)(x − 2)· · ·(x − (p − 1)). (this is not as simple as showing that each element in Zp is a root -- after all, we've seen that in Z6[x], the polynomial x^2-5x has 4 roots, 0, 5, 2, and 3, but x^2-5 is not equal to (x-0)(x-5)(x-2)(x-3))
Let p be an odd prime (i.e., any prime other than 2). Form two vector spaces...
Let p be an odd prime (i.e., any prime other than 2). Form two vector spaces V1, V2 over Fp (prime field of order p) with bases corresponding to the edges and faces of an icosahedron (so that V1 has dimension 30 and V2 has dimension 20). Let T : V1 → V2 be the linear transformation defined as follows: given a vector v ∈ V1, T(v) is the vector in V2 whose component corresponding to a given face is...
Let p be an odd prime and a be any integer which is not congruent to...
Let p be an odd prime and a be any integer which is not congruent to 0 modulo p. Prove that the congruence x 2 ≡ −a 2 (mod p) has solutions if and only if p ≡ 1 (mod 4). Hint: Naturally, you may build your proof on the fact that the statement to be proved is valid for the case a = 1.
Java program Prime Numbers A prime number is a natural number which has exactly two distinct...
Java program Prime Numbers A prime number is a natural number which has exactly two distinct natural number divisors: 1 and itself. For example, the first four prime numbers are: 2, 3, 5 and 7. Write a java program which reads a list of N integers and prints the number of prime numbers in the list. Input: The first line contains an integer N, the number of elements in the list. N numbers are given in the following lines. Output:...
Let p and q be two linearly independent vectors in R^n such that ||p||_2=1, ||q||_2=1 ....
Let p and q be two linearly independent vectors in R^n such that ||p||_2=1, ||q||_2=1 . Let A=pq^T+qp^T. determine the kernel, nullspace,rank and eigenvalue decomposition of A in terms of p and q.
Suppose we define a relation ~ on the set of nonzero real numbers R* = R\{0}...
Suppose we define a relation ~ on the set of nonzero real numbers R* = R\{0} by for all a , b E R*, a ~ b if and only if ab>0. Prove that ~ is an equivalence relation. Find the equivalence class [8]. How many distinct equivalence classes are there?
Let p, q, g : R → R be continuous functions. Let L[y] := y'' +...
Let p, q, g : R → R be continuous functions. Let L[y] := y'' + py' + qy. (i) Explain what it means for a pair of functions y1 and y2 to be a fundamental solution set for the equation L[y] = 0. (ii) State a theorem detailing the general solution of the differential equation L[y] = g(t) in terms of solutions to this, and a related, equation.
Let q and p be natural numbers, and show that the metric on Rq+p is equivalent...
Let q and p be natural numbers, and show that the metric on Rq+p is equivalent to the metric it has if we identify Rq+p with Rq × Rp.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT