Question

In: Statistics and Probability

Given that z is a standard normal random variable, compute the probability that it takes on...

Given that z is a standard normal random variable, compute the probability that it takes on a value between -2 and -1.

Solutions

Expert Solution

P[-2<Z<-1]

=0.1587-0.0228......................by using Z table.

=0.1359


Related Solutions

3. A) Given that z is a standard normal random variable, compute the probability that it...
3. A) Given that z is a standard normal random variable, compute the probability that it takes on a value between -2 and -1. 3. B). Given that z is a standard normal random variable, find the z-score for a situation where the area to the right of z is 0.0901.
Given that z is a standard normal random variable, compute the following probabilities. P(z ≤ -0.71)...
Given that z is a standard normal random variable, compute the following probabilities. P(z ≤ -0.71) P(z ≤ 1.82) P(z ≥ -0.71) P(z ≥ 1.22) P( –1.71 ≤ z ≤ 2.88) P( 0.56 ≤ z ≤ 1.07) P( –1.65 ≤ z ≤ –1.65) Given that z is a standard normal random variable, find z, for each situation. The area to the left of z is 0.9608 The area to the right of z is .0102 The area between o and...
Find the value of the probability of the standard normal random variable Z corresponding to this...
Find the value of the probability of the standard normal random variable Z corresponding to this area. (Round your answer to four decimal places.) P(−1.68 < Z < 1.23) =?
Given that z is a standard normal random variable, find z for each situation.
  Given that z is a standard normal random variable, find z for each situation. (Round your answers to two decimal places.) (a) The area to the left of z is 0.2119. (b) The area between −z and z is 0.9398. (c) The area between −z and z is 0.2052. (d) The area to the left of z is 0.9949. (e) The area to the right of z is 0.5793.
Suppose Z denotes the standard normal random variable. Compute the following a) P (Z > 2)...
Suppose Z denotes the standard normal random variable. Compute the following a) P (Z > 2) b) P(-1 < Z < 2.31) c) P (1.21 < Z < 2.42) d) P (Z < 1.37) e) P (Z > -1) Show working
a) Let z be a random variable with a standard normal distribution. Find the indicated probability....
a) Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(−2.02 ≤ z ≤ −0.31) = Shade the corresponding area under the standard normal curve. b) Assume that x has a normal distribution with the specified mean and standard deviation. Find the indicated probability. (Round your answer to four decimal places.) μ = 50; σ = 15 P(40 ≤ x ≤ 47) = c) Find z such...
A: Let z be a random variable with a standard normal distribution. Find the indicated probability....
A: Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(z ≤ 1.23) = B: Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(z ≥ −1.13) = C: Let z be a random variable with a standard normal distribution. Find the indicated probability. (Round your answer to four decimal places.) P(−1.87 ≤ z...
Find the following probability for a standard normal random variable, P(Z ≥ -2.16 )
Find the following probability for a standard normal random variable, P(Z ≥ -2.16 )
Given that z is a standard normal random variable, find z for each situation. (Draw the...
Given that z is a standard normal random variable, find z for each situation. (Draw the graph in a paper with numbers going from -3 to +3. No need to draw it here for credit. But do it for your own learning.) The area to the left of z is 0.025 The area to the right of z is 0.975. The area to the right of z is 0.025. The area to the left of z is .6700. Suppose X...
Given that Z is a standard normal random variable, find z for each situation using the...
Given that Z is a standard normal random variable, find z for each situation using the Norm.S.Inv function in excel. a. The area to the right of z is .01 b. The area between -z and z is .9030 c. The area between -z and z is .9948 e. The area to the right of z is .025 f. The area to the right of z is .3300
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT