Question

In: Mechanical Engineering

R-134a expands through a throttling device from 900 kPA and 30 oC to -10 oC. a-...

R-134a expands through a throttling device from 900 kPA and 30 oC to -10 oC.
a- determine the entropy generation of this process.
b- the working fluid R-134a, this time expands adiabatically through a low pressure turbine with 90% isentropic efficiency from 900 kPa and 30 oC to -10 oC. What is the power generated by this turbine per unit mass flow rate of R134-a, in kj/kg.

Solutions

Expert Solution



Related Solutions

Saturated liquid refrigerant R-134a is throttled from 900 to 90 kPa at a rate of 0.32...
Saturated liquid refrigerant R-134a is throttled from 900 to 90 kPa at a rate of 0.32 kg/s. What is the rate of entropy generation for this throttling process? kW/K
100 kg of R-134a at 320 kPa are contained in a piston-cylinder device whose volume is...
100 kg of R-134a at 320 kPa are contained in a piston-cylinder device whose volume is 7.530 m3. The piston is now moved until the volume is one-half its original size. This is done such that the pressure of the R-134a does not change. Determine the final temperature and the change in the total internal energy of the R-134a. (Round the final answers to two decimal places.)
100 kg of R-134a at 200 kPa are contained in a piston–cylinder device whose volume is...
100 kg of R-134a at 200 kPa are contained in a piston–cylinder device whose volume is 12.766 m3. The piston is now moved until the volume is one-half its original size. This is done such that the pressure of the R-134a does not change. Determine the final temperature and the change in the total internal energy of R-134a. Use data from the steam tables. The final temperature is  °C. The total change in internal energy is  kJ/kg.
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 °...
Refrigerant R-134a enters the compressor of a refrigeration machine at 140 kPa pressure and -10 ° C temperature and exits at 1 MPa pressure. The volumetric flow of the refrigerant entering the compressor is 0.23 m3 / minute. The refrigerant enters the throttling valve at 0.95 MPa pressure and 30 ° C, exiting the evaporator as saturated steam at -18 ° C. The adiabatic efficiency of the compressor is 78%. Show the cycle in the T-s diagram. In addition, a)...
Refrigerant-134a enters the condenser of a residential heat pump at 900 kPa and 65oC at a...
Refrigerant-134a enters the condenser of a residential heat pump at 900 kPa and 65oC at a rate of 0.018 kg/s and leaves at 750 kPa subcooled by 2oC. The refrigerant enters the compressor at 200 kPa superheated by 3oC. Determine (a) the isentropic efficiency of the compressor in decimal (up to two decimals), (b) the rate of heat supplied to the heated room, and (c) the COP of the heat pump. Also determine (d) the COP if this heat pump...
A compressor receives 0.1 kg/s R-134a at 150 kPa, -10 degrees C and delivers it at...
A compressor receives 0.1 kg/s R-134a at 150 kPa, -10 degrees C and delivers it at 1000 kPa, 40oC. The power input is measured to be 3 kW. The compressor has heat transfer to air at 100 kPa coming in at 20 degrees C and leaving at 25 degrees C. I'm trying to find the mass flow rate of air, BUT can you please just show me the energy balance and Schematic to set this up. JUST the energy balance...
true or false: 1. A flow idealized as a throttling process through a device has h1...
true or false: 1. A flow idealized as a throttling process through a device has h1 < h2 and p1 < p2 2. Steady flow devices that result in a drop in working fluid pressure from inlet to exit are nozzle, turbine, pump, throttling device. 3. Mass flow rate for a flow modeled as one-dimensional depends on a density of working fluid, cross-sectional area through which flow passes, velocity of working fluid, and total volume of working fluid. 4. The...
A plunger cylinder device contains 50 L of liquid water at 50 oC and 180 kPa....
A plunger cylinder device contains 50 L of liquid water at 50 oC and 180 kPa. Heat is transferred to the water until 40% of the liquid evaporates. Determine the work done by the system during this process and explain the physical meaning of the sign of its result.
Determine the thermodynamic state of 1,1,1,2-Tetrafluoroethane (R-134a) at 102 °C and 1000 kPa. Critical Pressure= 4.059...
Determine the thermodynamic state of 1,1,1,2-Tetrafluoroethane (R-134a) at 102 °C and 1000 kPa. Critical Pressure= 4.059 MPa, Critical Temperature = 101.06°C. *I keep getting stuck with a quadratic equation and two volume values, when using the van der Waals equation of state (P=(RT/(V-b))-(a/V^2))....I am determining the thermodynamic state by finding if the compressibility factor (z) is less than or greater than 1, to find if attractive or repulsive forces dominate.
How do you find the specific volume of R-134A at P=700 kPa and T= 120 C?...
How do you find the specific volume of R-134A at P=700 kPa and T= 120 C? I know it is from the tables but I can't seem to figure out how to get the number: v = 0.43358 m^3/kg
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT