In: Finance
Suppose that the index model for stocks A and B is estimated from excess returns with the following results: RA = 3.5% + 0.65RM + eA RB = –1.6% + 0.80RM + eB σM = 21%; R-squareA = 0.22; R-squareB = 0.14 Assume you create a portfolio Q, with investment proportions of 0.50 in a risky portfolio P, 0.30 in the market index, and 0.20 in T-bill. Portfolio P is composed of 60% Stock A and 40% Stock B. a. What is the standard deviation of portfolio Q? (Calculate using numbers in decimal form, not percentages. Do not round intermediate calculations. Round your answer to 2 decimal places.) b. What is the beta of portfolio Q? (Do not round intermediate calculations. Round your answer to 2 decimal places.) c. What is the "firm-specific" risk of portfolio Q? (Calculate using numbers in decimal form, not percentages. Do not round intermediate calculations. Round your answer to 4 decimal places.) d. What is the covariance between the portfolio and the market index? (Calculate using numbers in decimal form, not percentages. Do not round intermediate calculations. Round your answer to 2 decimal places.)
A | B | C | D | E | F | G | H | I | J |
2 | |||||||||
3 | RA = 3.5% + 0.65RM + eA | ||||||||
4 | RB = -1.6% + 0.80RM + eB | ||||||||
5 | |||||||||
6 | R-square A | 0.22 | |||||||
7 | R-square B | 0.14 | |||||||
8 | |||||||||
9 | σM | 21% | |||||||
10 | σ(T-bill) | 0% | |||||||
11 | |||||||||
12 | |||||||||
13 | Portfolio P | Market Index | T-bill | ||||||
14 | Weight in portfolio Q | 50% | 30% | 20% | |||||
15 | |||||||||
16 | Using the above equation, | ||||||||
17 | A | B | |||||||
18 | Beta | 0.65 | 0.8 | ||||||
19 | Weight | 60% | 40% | ||||||
20 | For portfolio equation will be | ||||||||
21 | Rp = E(rp)+βp*RM+ep | ||||||||
22 | |||||||||
23 | Where E(rp) = ∑wiE(ri), βp= ∑wiβi and ep = ∑wiei | ||||||||
24 | |||||||||
25 | R-square is coefficient of determination which shows fraction of total variance explained by market | ||||||||
26 | R-square | =(β)2 (σM)2/(σ)2 | |||||||
27 | or | ||||||||
28 | (σ)2 | =(β)2 (σM)2/R-square | |||||||
29 | |||||||||
30 | (σA)2 | 0.0847 | =((D18*D9)^2)/D6 | ||||||
31 | (σB)2 | 0.2016 | =((E18*D9)^2)/D7 | ||||||
32 | |||||||||
33 | Total variance (σ2) of the stock which is given by following formula: | ||||||||
34 | (σ)2 | =(β)2 (σM)2+σ2(e) | |||||||
35 | |||||||||
36 | using the above equation | ||||||||
37 | σ2(e) | =(σ)2-(β)2 (σM)2 | |||||||
38 | |||||||||
39 | σ2(eA) | 0.066059795 | =D30-((D18*D9)^2) | ||||||
40 | σ2(eB) | 0.173376 | =D31-((E18*D9)^2) | ||||||
41 | |||||||||
42 | σ2(ep) | =∑wi2σ2(ei) | |||||||
43 | 0.052 | =(D19^2)*D39+(E19^2)*D40 | |||||||
44 | |||||||||
45 | βp | = ∑wiβi | |||||||
46 | 0.71 | =D19*D18+E19*E18 | |||||||
47 | |||||||||
48 | Total variance (σ2) of the portfolio P is given by following formula: | ||||||||
49 | (σp)2 | =(βp)2 (σM)2+σ2(ep) | |||||||
50 | 0.0738 | =((D46*D9)^2)+D43 | |||||||
51 | |||||||||
52 | Cov(P,M) | = βp*(σM)2 | |||||||
53 | =0.71*((21%)^2) | ||||||||
54 | 0.031 | =D46*(D9^2) | |||||||
55 | |||||||||
56 | Since the t-bill has variance of zero, therefore | ||||||||
57 | the variance of portfolio Q can be calculated as follows: | ||||||||
58 | Var(Q) | = w2P*σ2(RP) + w2M*σ2(RM) + 2*(wP)*(wM)*Cov(P, M) | |||||||
59 | =(0.50^2)*0.0738+(0.30^2)*(0.21^2)+2*0.50*0.30*0.031 | ||||||||
60 | 0.0318 | =(D14^2)*D50+(E14^2)*(D9^2)+2*D14*E14*D54 | |||||||
61 | |||||||||
62 | Hence Standard deviation of portfolio Q | 0.18 | =SQRT(D60) | ||||||
63 |