Question

In: Physics

The electric field near the surface of Earth points downward and has a magnitude of 130 N/C.


The electric field near the surface of Earth points downward and has a magnitude of 130 N/C. 

(a) Compare the upward electric force on an electron with the downward gravitational force. 

(b) What magnitude charge should be placed on a penny of mass 2 g so that the electric force balances the weight of the penny near Earth?s surface? C

Solutions

Expert Solution

Fe=qE

=1.6*10^-19C*150N/C

Fe=2.4*10^-17 N

Fg=mg

=-9.1*10^-31*9.8

F=-8.1*10^-30N

as we can see electric force is much bigger

b)Fe=qE

=-150Q

Fg=mg

=.002*9,8

=0.00196

=1.96*10^-2N

Fe+fg=0

(-150Q+1.96*10^-2)=0

1.96*10^-2=-150Q

Q=1.96*10^-2/150

=-0.013*10^-2

Q=-0.00013C


Related Solutions

The electric field near the surface of Earth points downward and has a magnitude of 130...
The electric field near the surface of Earth points downward and has a magnitude of 130 N/C. (a) Compare the upward electric force on an electron with the downward gravitational force. ____upward force/ downward force (b) What magnitude charge should be placed on a penny of mass 6 g so that the electric force balances the weight of the penny near Earth's surface? C
The electric field near Earth's surface points downward and has a magnitude of approximately 104 N/C....
The electric field near Earth's surface points downward and has a magnitude of approximately 104 N/C. What is the force (Fe) on an electron due to this electric field? magnitude= ?? Find the ratio of the magnitude of this force to the magnitude of the gravitational force (Fg) on the electron.. Fe/ Fg=?
A uniform electric field of magnitude 40 N/C is directed downward.
A uniform electric field of magnitude 40 N/C is directed downward. What are the magnitude and the direction of the force on a + 4C charge placed in this electric field? 160 N directed upward 160 N directed downward 10 N directed downward 0.1 N directed downward
Near the surface of the Earth there is an electric field of about 150 V/m which...
Near the surface of the Earth there is an electric field of about 150 V/m which points downward. Two identical balls with mass 0.407kg are dropped from a height of 2.29m , but one of the balls is positively charged with q1 = 338?C , and the second is negatively charged with q2=-338?C . Use conservation of energy to determine the difference in the speeds of the two balls when they hit the ground. (Neglect air resistance.)
What is the magnitude and direction of an electric field if it exerts a downward force...
What is the magnitude and direction of an electric field if it exerts a downward force of 10-6N on a charge of -5μC? Could you please explain how to do this question? Thank you
Using the symmetry of the arrangement, calculate the magnitude of the electric field in N/C at...
Using the symmetry of the arrangement, calculate the magnitude of the electric field in N/C at the center of the square given that qa = qb = −1.00 μC and qc = qd = + 4.93 μCq. Assume that the square is 5 m on a side.
At the equator, near the surface of the Earth, the magnetic field is approximately 50 ??...
At the equator, near the surface of the Earth, the magnetic field is approximately 50 ?? northward, and the electric field is about 100 N/C downward in fair weather. Find the magnitude and direction of gravitational, electric, and magnetic forces on an proton in this environment, assuming the proton has an instantaneous velocity of 5?106m/s directed to the west.
An electron is accelerated by a constant electric field of magnitude 300 N/C. (a) Find the...
An electron is accelerated by a constant electric field of magnitude 300 N/C. (a) Find the acceleration of the electron. 1Your answer was incorrect, but has changed from what was graded. Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. m/s2 (b) Use the equations of motion with constant acceleration to find the electron's speed after 8.00 10-9 s, assuming it starts from rest. 2 m/s
A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in...
A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in the negative z-direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 3.75 cm from its initial position. ____________J (c) Determine the change in electric potential energy of the charged particle. ___________J (d) Determine the speed of the charged particle. _______m/s
A uniform electric field with a magnitude of 6 × 10^6 N/C is applied to a...
A uniform electric field with a magnitude of 6 × 10^6 N/C is applied to a cube of edge length 0.1 m as seen in Fig 22-2 above. If the direction of the E - field is along the +x-axis, what is the electric flux passing through the shaded face of the cube?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT