Question

In: Physics

An electron is accelerated by a constant electric field of magnitude 300 N/C. (a) Find the...

An electron is accelerated by a constant electric field of magnitude 300 N/C.
(a) Find the acceleration of the electron.
1Your answer was incorrect, but has changed from what was graded.
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. m/s2

(b) Use the equations of motion with constant acceleration to find the electron's speed after 8.00 10-9 s, assuming it starts from rest.
2 m/s

Solutions

Expert Solution

Given

\(E=300 \mathrm{~N} / \mathrm{C}\)

\(e=1.60 \times 10^{-10} \mathrm{C}\)

\(m=9.11 \times 10^{-31} \mathrm{~kg}\)

\((a)\) acceleration \(a=\frac{E e}{m}\)

\(=0.527 \times 10^{14} \mathrm{~m} / \mathrm{s}^{2}\)

\(=527 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}\)

(b)

Given

\(\begin{aligned} u &=0 \\ t=& 8.00 \times 10^{-9} \mathrm{~s} \\ v &=u+a t \\ &=0+\left(527 \times 10^{11} \mathrm{~m} / \mathrm{s}^{2}\right)\left(8.00 \times 10^{-9} \mathrm{~s}\right) \\ &=4216 \times 10^{2} \mathrm{~m} / \mathrm{s} \\ &=421.6 \mathrm{Km} / \mathrm{s} \\ & \approx 422 \mathrm{~km} / \mathrm{s} \end{aligned}\)


Related Solutions

Using the symmetry of the arrangement, calculate the magnitude of the electric field in N/C at...
Using the symmetry of the arrangement, calculate the magnitude of the electric field in N/C at the center of the square given that qa = qb = −1.00 μC and qc = qd = + 4.93 μCq. Assume that the square is 5 m on a side.
A uniform electric field of magnitude 40 N/C is directed downward.
A uniform electric field of magnitude 40 N/C is directed downward. What are the magnitude and the direction of the force on a + 4C charge placed in this electric field? 160 N directed upward 160 N directed downward 10 N directed downward 0.1 N directed downward
A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in...
A proton is acted on by a uniform electric field of magnitude 313 N/C pointing in the negative z-direction. The particle is initially at rest. (a) In what direction will the charge move? (b) Determine the work done by the electric field when the particle has moved through a distance of 3.75 cm from its initial position. ____________J (c) Determine the change in electric potential energy of the charged particle. ___________J (d) Determine the speed of the charged particle. _______m/s
A uniform electric field with a magnitude of 6 × 10^6 N/C is applied to a...
A uniform electric field with a magnitude of 6 × 10^6 N/C is applied to a cube of edge length 0.1 m as seen in Fig 22-2 above. If the direction of the E - field is along the +x-axis, what is the electric flux passing through the shaded face of the cube?
An electron is to be accelerated in a uniform electric field having a strength of 4.58×106...
An electron is to be accelerated in a uniform electric field having a strength of 4.58×106 V/m. (a) What energy in keV is given to the electron if it is accelerated through 0.562 m? (b) Over what distance would it have to be accelerated to increase its energy by 58.0 GeV? Draw a diagram and show your parameters and all your work.
An electron of charge q = -c is first traveling perpendicular to a constant electric field....
An electron of charge q = -c is first traveling perpendicular to a constant electric field. Illustrate a diagram depicting the trajectory of the electron, and name the shape of the trajectory (whether it's linear, circular, parabolic, hyperbolic, or elliptical). Explain why the electron has the trajectory you found out.
3. In ion mobility spectrometer, the ions are accelerated under a constant electric field in a...
3. In ion mobility spectrometer, the ions are accelerated under a constant electric field in a cylindrical tube and the time of flight of the ions in this tube is measured. The ions are detected by using a sensor at the end of the tube. a) What type of sensor can be used to detect the ions? b) The experiment is performed at high frequencies to be able to decrease the effect of the noise. What type of noises can...
The electric field between two parallel plates is uniform, with magnitude 576 N/C. A proton is...
The electric field between two parallel plates is uniform, with magnitude 576 N/C. A proton is held stationary at the positive plate, and an electron is held stationary at the negative plate. The plate separation is 4.06 cm. At the same moment, both particles are released. (a) Calculate the distance (in cm) from the positive plate at which the two pass each other. Ignore the electrical attraction between the proton and electron. _______cm (b) Repeat part (a) for a sodium...
The electric field near the surface of Earth points downward and has a magnitude of 130 N/C.
The electric field near the surface of Earth points downward and has a magnitude of 130 N/C. (a) Compare the upward electric force on an electron with the downward gravitational force. (b) What magnitude charge should be placed on a penny of mass 2 g so that the electric force balances the weight of the penny near Earth?s surface? C
The electric field near Earth's surface points downward and has a magnitude of approximately 104 N/C....
The electric field near Earth's surface points downward and has a magnitude of approximately 104 N/C. What is the force (Fe) on an electron due to this electric field? magnitude= ?? Find the ratio of the magnitude of this force to the magnitude of the gravitational force (Fg) on the electron.. Fe/ Fg=?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT