Question

In: Chemistry

Derive an expression for the time dependence of the free radical concentration

Derive an expression for the time dependence of the free radical concentration

Solutions

Expert Solution

Solution:

​The expression are as below,

Time dependence of free radical concentration,

Initiation step

Propagation step

The reaction undergoes two different mode of termination are shown below,

The rate of initiator decomposition is,

The rate of termination step is,

by steady-state assumption we get,

The measurable term of radical concentration expression is,

The free radical concentration with respect to time is,


Related Solutions

A reaction A-> B has the following time dependence for the concentration of [A] vs time....
A reaction A-> B has the following time dependence for the concentration of [A] vs time. For t=(0 s, 5 s, 10 s, 15 s, 25 s) the concentration of [A]=(30.00 M, 15.42 M, 10.38 M, 7.82 M, 5.24 M). The initial concentration of [A] is the value at t=0 s. (A)Calculate the values of the rate constant k assuming that the reaction is first order. - for all values k B)calculate the value of k if the reaction is...
A reaction A B has the following time dependence for the concentration of [A] vs time....
A reaction A B has the following time dependence for the concentration of [A] vs time. For t=(0 s, 5 s, 10 s, 15 s, 25 s) the concentration of [A]=(30.00 M, 16.85 M, 11.72 M, 8.98 M, 6.12 M). The initial concentration of [A] is the value at t=0 s. (A)Calculate the values of the rate constant k assuming that the reaction is first order. What is the value of k at 5 s? s-1 What is the value...
Derive an expression of the mean free path of a gas molecule assuming a hard sphere...
Derive an expression of the mean free path of a gas molecule assuming a hard sphere collision. Calculate the ratio of the mean free path of CO molecules in a vessel at a pressure P1=10-4 Torr at 300 K to that at a pressure P2=10-9 Torr at the same temperature. (CO molecules d =0.73nm)
Derive the expression for the time averaged heating in the metal in which AC current of...
Derive the expression for the time averaged heating in the metal in which AC current of frequency ω flows – use the expression for the AC conductivity and P= ⋅EJ relation for instant power
Assume a trapezoidal speed time curve and derive an expression for the maximum speed.
Assume a trapezoidal speed time curve and derive an expression for the maximum speed.
From first principles, derive the expression for the measurement of time as observed from a reference...
From first principles, derive the expression for the measurement of time as observed from a reference inertial frame S' moving at a relativistic speed v in the x direction to another inertial frame S
4 (a) Derive a relation for the oxygen pressure dependence of electrical conductivity in NiO.      ...
4 (a) Derive a relation for the oxygen pressure dependence of electrical conductivity in NiO.       (b) Discuss the effects of Cr2O3 additions on the electrical conductivity of NiO, giving equations describing the temperature at which the conductivity changes from intrinsic to extrinsic in relation to the impurity concentration.  
(a) Derive a relation for the oxygen pressure dependence of electrical conductivity in NiO.       (b)...
(a) Derive a relation for the oxygen pressure dependence of electrical conductivity in NiO.       (b) Discuss the effects of Cr2O3 additions on the electrical conductivity of NiO, giving equations describing the temperature at which the conductivity changes from intrinsic to extrinsic in relation to the impurity concentration.  
4 (a) Derive a relation for the oxygen pressure dependence of electrical conductivity in NiO. (b)...
4 (a) Derive a relation for the oxygen pressure dependence of electrical conductivity in NiO. (b) Discuss the effects of Cr2O3 additions on the electrical conductivity of NiO, giving equations describing the temperature at which the conductivity changes from intrinsic to extrinsic in relation to the impurity concentration.
a. State the ampere circuital law b. Derive expression for inductance of a Toroid? c. Derive...
a. State the ampere circuital law b. Derive expression for inductance of a Toroid? c. Derive the set of Maxwell’s equations with solutions in the integral form from the fundamental laws of a good conductor? d. Derive the expression for torque developed in a rectangular closed circuit current (I) in a uniform field?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT