Question

In: Statistics and Probability

D.48  Predicting Percent Body Fat Data 10.1 introduces the dataset BodyFat. Computer output is shown for using...

D.48  Predicting Percent Body Fat

Data 10.1 introduces the dataset BodyFat. Computer output is shown for using this sample to create a multiple regression model to predict percent body fat using the other nine variables.

Predictor

Coef

SE Coef

T

P

The regression equation is

Bodyfat = − 23.7 + 0.0838 Age − 0.0833 Weight + 0.036 Height + 0.001 Neck − 0.139 Chest + 1.03 Abdomen + 0.226 Ankle + 0.148 Biceps − 2.20 Wrist

Constant

−23.66

29.46

−0.80

0.424

Age

0.08378

0.05066

1.65

0.102

Weight

−0.08332

0.08471

−0.98

0.328

Height

0.0359

0.2658

0.14

0.893

Neck

0.0011

0.3801

0.00

0.998

Chest

−0.1387

0.1609

−0.86

0.391

Abdomen

1.0327

0.1459

7.08

0.000

Ankle

0.2259

0.5417

0.42

0.678

Biceps

0.1483

0.2295

0.65

0.520

Wrist

−2.2034

0.8129

−2.71

0.008

S = 4.13552

R-Sq = 75.7%

R-Sq(adj) = 73.3%

Analysis of Variance

Source

DF

SS

MS

F

P

Regression

9

4807.36

534.15

31.23

0.000

Residual Error

90

1539.23

17.10

Total

99

6346.59

(a)  Interpret the coefficients of Age and Abdomen in context. Age is measured in years and Abdomen is abdomen circumference in centimeters.

(b)  Use the p-value from the ANOVA test to determine whether the model is effective.

(c)  Interpret R2 in context.

(d)  Which explanatory variable is most significant in the model? Which is least significant?

(e)  Which variables are significant at a 5% level?

Solutions

Expert Solution



Related Solutions

ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT