In: Statistics and Probability
X | Mean, x̅ | x-x̅ | (x-x̅)² |
32 | 29.8125 | 2.1875 | 4.78516 |
20 | 29.8125 | -9.8125 | 96.28516 |
25 | 29.8125 | -4.8125 | 23.16016 |
52 | 29.8125 | 22.1875 | 492.28516 |
16 | 29.8125 | -13.8125 | 190.78516 |
21 | 29.8125 | -8.8125 | 77.66016 |
28 | 29.8125 | -1.8125 | 3.28516 |
35 | 29.8125 | 5.1875 | 26.91016 |
23 | 29.8125 | -6.8125 | 46.41016 |
41 | 29.8125 | 11.1875 | 125.16016 |
46 | 29.8125 | 16.1875 | 262.03516 |
17 | 29.8125 | -12.8125 | 164.16016 |
23 | 29.8125 | -6.8125 | 46.41016 |
27 | 29.8125 | -2.8125 | 7.91016 |
11 | 29.8125 | -18.8125 | 353.91016 |
60 | 29.8125 | 30.1875 | 911.28516 |
∑x = 477
n = 16
∑(x-x̅)² = 2832.4375
Mean, x̅ = Ʃx/n = 477/16 = 29.813
Standard deviation, s = √(Ʃ(x-x̅)²/(n-1)) = √(2832.4375/(16-1)) = 13.742
Minimum = 11
First quartile, Q1 = 4.5th value of sorted data = 20.5
Median = 0.5(n+1)th value = 8.5th value of sorted data = 26
Third quartile, Q3 = 12.5th value of sorted data = 38
Maximum = 60
IQR = Q3 - Q1 = 38 - 20.5 = 17.5
Lower Fence = Q1 - 1.5*IQR = -5.75
Upper Fence = Q3 + 1.5*IQR = 64.25
Replacing the largest number with 65 results in the smallest whole number outlier.
--
If any doubt ask me in comments