Question

In: Physics

Let's suppose we are pulling a box of mass m along a horizontal floor. All sides...

Let's suppose we are pulling a box of mass m along a horizontal floor. All sides of the box have the same type of surface (same coefficient of friction between any side and the floor). In one case, the contact surface is much larger (first picture) and in another, it is much smaller. Will there be any difference in the force of friction? Why?

Solutions

Expert Solution

No, there will be no difference in force of friction with two different surface area provided coefficient of friction between box surface and horizontal floor is same. This is because force of friction is independent of the contact surface area of the two surfaces which are in contact with each other.

Although a large contact area between two surfaces would result in larger frictional forces, simultaneously it also reduces the pressure between the two surfaces for the force holding the two surfaces together (because pressure is force divided by area). Hence the result is, increase in friction generating area is exactly offset by reduction in pressure. Thus the resulting frictional forces only depend on the coefficient of friction and independent of the surface area of the surfaces in contact and the force holding them together.

Thus increasing force would result in increase in frictional forces.


Related Solutions

A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of...
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of kinetic friction μk = 0.06, for a distance d = 5.1 m. Then the mass is continued to be pulled up a frictionless incline that makes an angle θ = 28° with the horizontal. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of θ = 28° (thus on the incline it is...
A mass m = 16 kg is pulled along a horizontal floor with NO friction for...
A mass m = 16 kg is pulled along a horizontal floor with NO friction for a distance d =8.4 m. Then the mass is pulled up an incline that makes an angle ? = 25
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of...
A mass m = 17 kg is pulled along a horizontal floor, with a coefficient of kinetic friction ?k = 0.06, for a distance d = 6.7 m. Then the mass is continued to be pulled up a frictionless incline that makes an angle ? = 33° with the horizontal. The entire time the massless rope used to pull the block is pulled parallel to the incline at an angle of ? = 33° (thus on the incline it is...
A box of mass M sits on the floor of an elevator at rest. Gravity (which...
A box of mass M sits on the floor of an elevator at rest. Gravity (which has a strength set by the local acceleration due to gravity g) pulls the box and the floor pushes the box. The net or total force on the box is zero. What is the force on the box from the floor? Give both the magnitude and the direction. Now imagine that the elevator is accelerating upwards at acceleration a. Now the two forces on...
A hollow sphere is rolling along a horizontal floor at 4.80 m/s when it comes to...
A hollow sphere is rolling along a horizontal floor at 4.80 m/s when it comes to a 26.0° incline. How far up the incline does it roll before reversing direction? The correct answer 4.47 please explain why and show work?
A 78.0 kg hoop rolls along a horizontal floor so that its center of mass has...
A 78.0 kg hoop rolls along a horizontal floor so that its center of mass has a speed of 0.190 m/s. How much work must be done on the hoop to stop it?
A particle of mass m is constrained to lie along a frictionless, horizontal plane subject to...
A particle of mass m is constrained to lie along a frictionless, horizontal plane subject to a force given by F (x) = −kx + kx^3/A^2 where k and A are positive constants. The particle is projected from x = 0 to the right with initial kinetic energy T0. Find the turning points of the motion and the condition the total energy of the particle must satisfy if its motion is to exhibit turning points.
A particle of mass m is constrained to lie along a frictionless, horizontal plane subject to...
A particle of mass m is constrained to lie along a frictionless, horizontal plane subject to a force given by F (x) = −kx + kx^3/A^2 where k and A are positive constants. The particle is projected from x = 0 to the right with initial kinetic energy T0. Find the turning points of the motion and the condition the total energy of the particle must satisfy if its motion is to exhibit turning points.
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of...
A block of mass m = 98 kg slides along a horizontal surface. The coefficient of friction between the block and the surface is μk = 0.38. The block has an initial speed of vo = 13 m/s in the positive x-direction as shown. a) write an expression for x-component of the frictional force the block experiences, F(f), in terms of the given variables and variables available in the palette b) what is the magnitude of the frictional force in...
A solid sphere (mass 0.324 kg, radius 0.245 m) sits at rest on a horizontal floor....
A solid sphere (mass 0.324 kg, radius 0.245 m) sits at rest on a horizontal floor. You begin to push the sphere until it is rotating at 42.6 Hz. Assume the sphere always moves by rolling without slipping. Find the work you have done to accelerated the sphere, in J.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT