Question

In: Mechanical Engineering

A 3-phase, 5 kVA, 208 V, four-pole, 60 Hz, Y-connected synchronous machine has negligible stator winding...

A 3-phase, 5 kVA, 208 V, four-pole, 60 Hz, Y-connected synchronous machine has negligible stator
winding resistance and a synchronous reactance of 8
per phase at rated terminal voltage. Themachine is operated as a generator and delivers rated kVA at 0.8 power factor lagging.


(a) Determine the excitation voltage,
(b) Find the power angle,
(c) Draw the phasor diagram,
(d) Find the stator current assuming that the field excitation current is now increased by 20 %
(without changing the prime mover power).

Solutions

Expert Solution


Related Solutions

A 3-phase, 5 kVA, 208 V, 4-pole, 60 Hz, star-connected synchronous generator has negligible stator winding...
A 3-phase, 5 kVA, 208 V, 4-pole, 60 Hz, star-connected synchronous generator has negligible stator winding resistance and a synchronous reactance of 8 Ω per phase at the rated terminal voltage. The generator is connected in parallel to a 3-phase, 208 V, 60 Hz infinite bus. All losses may be neglected. a)   Determine the excitation voltage and the power angle when the machine is delivering rated apparent power at 0.8 PF lagging. b)   If the field excitation is increased by...
A three phase, 60 Hz, 480 V, Y-connected, two-pole synchronous generator has a synchronous reactance of...
A three phase, 60 Hz, 480 V, Y-connected, two-pole synchronous generator has a synchronous reactance of 0.95 Ω per phase. Its armature resistance is negligible. Its combined friction and windage losses are 1.3 kW and its core losses are 0.95 kW. The field current is constant at no-load. Its full load armature current is 55 A at 0.9PF lagging. Assume phase voltage is a reference. Determine following: a) Its terminal voltage when it is loaded with the rated current at...
480 V, 200 kVA, 08 PF lagging, 60 Hz two pole Y connected synchronous generator has...
480 V, 200 kVA, 08 PF lagging, 60 Hz two pole Y connected synchronous generator has a synchronous reactance of 0.25 Ω and an armature resistance of 0.03 Ω. At 60 Hz, its friction and windage losses are 6 kW, and its core losses are 4 kW. The field circuit has a dc voltage of 200 V, and the maximum IF is 10 A. The resistance of the field circuit is adjustable over the range from 20 to 200 Ω....
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding...
A 440 V 4-pole 3 phase 50 Hz slip ring induction motor has its stator winding mesh connected and its rotor winding star connected. The standstill voltage measured between slip rings with the rotor open –circuited is 218 V. the stator resistance per phase is 0.6Ω and the stator reactance per phase is 3Ω. The rotor resistance per phase is 0.05Ω and the rotor reactance per phase is 0.25Ω. Calculate the maximum torque and the slip at which it occurs....
A 480 V, 50 Hz, Y-connected six-pole synchronous generator has a per-phase synchronous reactance of 1.0...
A 480 V, 50 Hz, Y-connected six-pole synchronous generator has a per-phase synchronous reactance of 1.0 Ω. Its full-load armature current is 60 A at 0.8 PF lagging. Its friction and windage losses are 1.5 kW and core losses are 1.0 kW at 60 Hz at full load. Assume that the armature resistance (and, therefore, the I2R losses) can be ignored. The field current has been adjusted such that the no-load terminal voltage is 480 V. a. What is the...
396 v, 60 Hz, 600 hp, 0.6 pf-leading, four-pole triangle connected synchronous motor has 0.9Ω synchronous...
396 v, 60 Hz, 600 hp, 0.6 pf-leading, four-pole triangle connected synchronous motor has 0.9Ω synchronous reactance. Friction; wind; core losses and armature resistance are neglected. a) If the motor is operating under magnitude of phase current (ia) 216 Ampere and power factor of 0.6 lagging, 1. Find the input power of motor in hp ( 2. Find the generated voltage, EA 3. Find the torque and the maximum inducible torque in current state. b) If EA is increased by...
The following test data apply to a 110 kVA, 2300 V three-phase four-pole 60 Hz induction...
The following test data apply to a 110 kVA, 2300 V three-phase four-pole 60 Hz induction motor. No load test at rated voltage and frequency: Load current = 8.1 A, Three-phase power = 3025 W Blocked-rotor test at rated current and 15 Hz: Line voltage = 268 V, Three-phase power = 10.2 kW Stator resistance between line terminals = 2.34 Ω. Compute the stator current and power factor, kW output, and efficiency when this motor is operating at rated voltage...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following...
A 3 phase 460 V, 60 Hz, 4 pole, delta connected induction motor has the following equivalent circuit parameters. Rs = 0.42 Ω, Rr = 0.23 Ω, Xs = Xr = 0.82 Ω. Xm = 22 Ω. The no load loss = 60 W and may be assumed constant. The rotor speed is 1750 rpm. Use the approximate equivalent circuit ( i.e. the Xm branch is at the very left of the circuit) determine the following a. the synchronous speed...
Consider two equal non sallent pole three phase 60 cycle Y connected 6600 volt 10000-kva synchronous...
Consider two equal non sallent pole three phase 60 cycle Y connected 6600 volt 10000-kva synchronous generators, each wuth an effective resistance of 0.063 ohm per phase and a synchronous reactance of 1.52 ohm per phase. Assume that the resistances and reactances of the generators are constant. These generators in parallel carry an inductive load of 18000 kva at 0.9 power factor. (a) find the excitation voltages of the generators and their power angles when they share the kw load...
A 60-Hz, 208-V, 2 pole wye connected induction motor is rated at 15hp. The equivalent parameters...
A 60-Hz, 208-V, 2 pole wye connected induction motor is rated at 15hp. The equivalent parameters are as follows: RS = 0.2 Ω RR’ = 0.120 Ω XS = XR’ = 0.41 Ω Xm = 15 Ω The machine has negligible miscellaneous losses but experiences mechanical loss and core loss of 250 W and 180 W, respectively. For a slip of 5 %, determine a) The line current. (44.8  -25.5  A) b) The stator copper losses (1.205 kW)...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT