Question

In: Math

1. Use Gauss-Jordan row reduction to solve the given system of equations. HINT [See Examples 1-6.]...

1.

Use Gauss-Jordan row reduction to solve the given system of equations. HINT [See Examples 1-6.] (If there is no solution, enter NO SOLUTION. If the system is dependent, express your answer in terms of x, where

y = y(x)

and

z = z(x).)

−x + 2y z = 0
−x y + 2z = 0
2x z = 3

2.Use Gauss-Jordan row reduction to solve the given system of equations. HINT [See Examples 1-6.] (If there is no solution, enter NO SOLUTION. If the system is dependent, express your answer in terms of z, where

x = x(z)

and

y = y(z).)

3x y + z = 4
4x y + z =

2

3.Use Gauss-Jordan row reduction to solve the given system of equations. HINT [See Examples 1-6.] (If there is no solution, enter NO SOLUTION. If the system is dependent, express your answer in terms of z, where

x = x(z)

and

y = y(z).)

4x y z = 0
x + y + z = 5

4.Use Gauss-Jordan row reduction to solve the given system of equations. HINT [See Examples 1-6.] (If there is no solution, enter NO SOLUTION. If the system is dependent, express your answer in terms of x, where

y = y(x)

and

z = z(x).)

2x y + z = 3
−x + 0.5y 0.5z = 2.5

Solutions

Expert Solution

1)

-x + 2y - z = 0

- x - y + 2z = 0

2x - z = 3

hence, solution is

x = 3 , y = 3 , z = 3

2)

3x - y + z = 4

4x - y + z = 2

x = - 2

y - z = - 10

y = - 10 + z

x = - 2

y = - 10 + z


Related Solutions

1) Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no...
1) Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION. If there are infinitely many solutions, express your answer in terms of the parameters t and/or s.) 3y + 2z = 1 2x − y − 3z = 4 2x + 2y − z = 5 (x, y, z) = 2) Solve the system of linear equations, using the Gauss-Jordan elimination method. (If there is no solution, enter NO SOLUTION....
Use either Gaussian elimination or Gauss-Jordan elimination to solve the given system or show that no...
Use either Gaussian elimination or Gauss-Jordan elimination to solve the given system or show that no solution exists. (Please show clear steps and explain them) x1 + x2 + x3 = 7 x1 − x2 − x3 = −3 3x1 + x2 + x3 = 11
Use the Gauss-Jordan elimination method to solve the following system of linear equations. State clearly whether...
Use the Gauss-Jordan elimination method to solve the following system of linear equations. State clearly whether the system has a unique solution, infinitely many solutions, or no solutions. { ? + 2? = 9 ? + ? = 1 3? − 2? = 9
1) Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 4y −...
1) Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 4y − 6z = 56 x + 2y + 3z = −2 3x − 4y + 4z = −21 (x, y, z) = 2) Solve the system of linear equations using the Gauss-Jordan elimination method. 5x + 3y = 9 −2x + y = −8 (x, y) =
Please Answer 1-3 for me 1. Solve the system of linear equations using the Gauss-Jordan elimination...
Please Answer 1-3 for me 1. Solve the system of linear equations using the Gauss-Jordan elimination method. 2x1 − x2 + 3x3 = −16 x1 − 2x2 + x3 = −5 x1 − 5x2 + 2x3 = −11 (x1, x2, x3) = ( ) 2. Formulate a system of equations for the situation below and solve. For the opening night at the Opera House, a total of 1000 tickets were sold. Front orchestra seats cost $90 apiece, rear orchestra seats...
Solve the following system of equations using Gaussian or​ Gauss-Jordan elimination. w + x + y...
Solve the following system of equations using Gaussian or​ Gauss-Jordan elimination. w + x + y + z = -2 2w +2x - 2y - 2z = -12 3w - 2x + 2y + z = 4 w - x + 7y + 3z = 4
Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 2y + z...
Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 2y + z = 3 x + z = 2 4y − 3z = 13 solve for x,y,x
Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 3y - 2z...
Solve the system of linear equations using the Gauss-Jordan elimination method. 2x + 3y - 2z = 8 3x - 2y + 2z = 2 4x - y + 3z = 2 (x, y, z) = ?
Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no...
Solve the system using either Gaussian elimination with back-substitution or Gauss-Jordan elimination. (If there is no solution, enter NO SOLUTION. If the system has an infinite number of solutions, express x, y, z, and w in terms of the parameters t and s.) 4x + 12y − 7z − 20w = 20 3x + 9y − 5z − 28w = 36 (x, y, z, w) = ( ) *Last person who solved this got it wrong
Solve the system of equations x?2y?z?2t=1 3x?5y?2z?3t=2 2x?5y?2z?5t=3 ?x+4y+4z+11t= ?1 Using Gauss-Jordan to Solve a System
Solve the system of equations x?2y?z?2t=1 3x?5y?2z?3t=2 2x?5y?2z?5t=3 ?x+4y+4z+11t= ?1 Using Gauss-Jordan to Solve a System
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT