In: Statistics and Probability
Solve the system of linear equations using the Gauss-Jordan elimination method.
| 2x | + | 2y | + | z | = | 3 | 
| x | + | z | = | 2 | ||
| 4y | − | 3z | = | 13 | 
solve for x,y,x
matrix
| X1 | X2 | X3 | b | |
|---|---|---|---|---|
| 1 | 2 | 2 | 1 | 3 | 
| 2 | 1 | 0 | 1 | 2 | 
| 3 | 4 | 0 | -3 | 13 | 
Write the main matrix
| X1 | X2 | X3 | |
|---|---|---|---|
| 1 | 2 | 2 | 1 | 
| 2 | 1 | 0 | 1 | 
| 3 | 4 | 0 | -3 | 
Determinant is not zero, therefore inverse matrix exists
matrix
| A1 | A2 | A3 | |
|---|---|---|---|
| 1 | 2 | 2 | 1 | 
| 2 | 1 | 0 | 1 | 
| 3 | 4 | 0 | -3 | 
Determinant is not zero, therefore inverse matrix exists
Write the augmented matrix
| A1 | A2 | A3 | B1 | B2 | B3 | |
|---|---|---|---|---|---|---|
| 1 | 2 | 2 | 1 | 1 | 0 | 0 | 
| 2 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 3 | 4 | 0 | -3 | 0 | 0 | 1 | 
Find the pivot in the 1st column and swap the 2nd and the 1st rows
| A1 | A2 | A3 | B1 | B2 | B3 | |
|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 2 | 2 | 2 | 1 | 1 | 0 | 0 | 
| 3 | 4 | 0 | -3 | 0 | 0 | 1 | 
Eliminate the 1st column
| A1 | A2 | A3 | B1 | B2 | B3 | |
|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 2 | 0 | 2 | -1 | 1 | -2 | 0 | 
| 3 | 0 | 0 | -7 | 0 | -4 | 1 | 
Make the pivot in the 2nd column by dividing the 2nd row by 2
| A1 | A2 | A3 | B1 | B2 | B3 | |
|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 2 | 0 | 1 | -1/2 | 1/2 | -1 | 0 | 
| 3 | 0 | 0 | -7 | 0 | -4 | 1 | 
Make the pivot in the 3rd column by dividing the 3rd row by -7
| A1 | A2 | A3 | B1 | B2 | B3 | |
|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 1 | 0 | 1 | 0 | 
| 2 | 0 | 1 | -1/2 | 1/2 | -1 | 0 | 
| 3 | 0 | 0 | 1 | 0 | 4/7 | -1/7 | 
Eliminate the 3rd column
| A1 | A2 | A3 | B1 | B2 | B3 | |
|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 0 | 3/7 | 1/7 | 
| 2 | 0 | 1 | 0 | 1/2 | -5/7 | -1/14 | 
| 3 | 0 | 0 | 1 | 0 | 4/7 | -1/7 | 
There is the inverse matrix on the right
| A1 | A2 | A3 | B1 | B2 | B3 | |
|---|---|---|---|---|---|---|
| 1 | 1 | 0 | 0 | 0 | 3/7 | 1/7 | 
| 2 | 0 | 1 | 0 | 1/2 | -5/7 | -1/14 | 
| 3 | 0 | 0 | 1 | 0 | 4/7 | -1/7 | 
inverse matrix
| X1 | X2 | X3 | |
|---|---|---|---|
| 1 | 0 | 3/7 | 1/7 | 
| 2 | 1/2 | -5/7 | -1/14 | 
| 3 | 0 | 4/7 | -1/7 | 
Multiply the inverse matrix by the solution vector
| X | |
|---|---|
| 1 | 19/7 | 
| 2 | -6/7 | 
| 3 | -5/7 | 
Solution set:
x1 = 19/7
x2 = -6/7
x3 = -5/7
please like ??