In: Statistics and Probability
Solve the system of linear equations using the Gauss-Jordan elimination method.
2x | + | 2y | + | z | = | 3 |
x | + | z | = | 2 | ||
4y | − | 3z | = | 13 |
solve for x,y,x
matrix
X1 | X2 | X3 | b | |
---|---|---|---|---|
1 | 2 | 2 | 1 | 3 |
2 | 1 | 0 | 1 | 2 |
3 | 4 | 0 | -3 | 13 |
Write the main matrix
X1 | X2 | X3 | |
---|---|---|---|
1 | 2 | 2 | 1 |
2 | 1 | 0 | 1 |
3 | 4 | 0 | -3 |
Determinant is not zero, therefore inverse matrix exists
matrix
A1 | A2 | A3 | |
---|---|---|---|
1 | 2 | 2 | 1 |
2 | 1 | 0 | 1 |
3 | 4 | 0 | -3 |
Determinant is not zero, therefore inverse matrix exists
Write the augmented matrix
A1 | A2 | A3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
1 | 2 | 2 | 1 | 1 | 0 | 0 |
2 | 1 | 0 | 1 | 0 | 1 | 0 |
3 | 4 | 0 | -3 | 0 | 0 | 1 |
Find the pivot in the 1st column and swap the 2nd and the 1st rows
A1 | A2 | A3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 2 | 2 | 1 | 1 | 0 | 0 |
3 | 4 | 0 | -3 | 0 | 0 | 1 |
Eliminate the 1st column
A1 | A2 | A3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 2 | -1 | 1 | -2 | 0 |
3 | 0 | 0 | -7 | 0 | -4 | 1 |
Make the pivot in the 2nd column by dividing the 2nd row by 2
A1 | A2 | A3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 1 | -1/2 | 1/2 | -1 | 0 |
3 | 0 | 0 | -7 | 0 | -4 | 1 |
Make the pivot in the 3rd column by dividing the 3rd row by -7
A1 | A2 | A3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
1 | 1 | 0 | 1 | 0 | 1 | 0 |
2 | 0 | 1 | -1/2 | 1/2 | -1 | 0 |
3 | 0 | 0 | 1 | 0 | 4/7 | -1/7 |
Eliminate the 3rd column
A1 | A2 | A3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 3/7 | 1/7 |
2 | 0 | 1 | 0 | 1/2 | -5/7 | -1/14 |
3 | 0 | 0 | 1 | 0 | 4/7 | -1/7 |
There is the inverse matrix on the right
A1 | A2 | A3 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|
1 | 1 | 0 | 0 | 0 | 3/7 | 1/7 |
2 | 0 | 1 | 0 | 1/2 | -5/7 | -1/14 |
3 | 0 | 0 | 1 | 0 | 4/7 | -1/7 |
inverse matrix
X1 | X2 | X3 | |
---|---|---|---|
1 | 0 | 3/7 | 1/7 |
2 | 1/2 | -5/7 | -1/14 |
3 | 0 | 4/7 | -1/7 |
Multiply the inverse matrix by the solution vector
X | |
---|---|
1 | 19/7 |
2 | -6/7 |
3 | -5/7 |
Solution set:
x1 = 19/7
x2 = -6/7
x3 = -5/7
please like ??