Question

In: Physics

Find the momentum and speed of a proton whose kinetic energy equals its rest energy.

Find the momentum and speed of a proton whose kinetic energy equals its rest energy.

Solutions

Expert Solution


Related Solutions

1. What is the momentum (p) of a 960-MeV proton (that is, its kinetic energy is...
1. What is the momentum (p) of a 960-MeV proton (that is, its kinetic energy is 960 MeVMeV )? Express your answer with the appropriate units. 2. An electron (mmm = 9.11×10−31 kg ) is accelerated from rest to speed vv by a conservative force. In this process, its potential energy decreases by 6.70×10−14 JJ . Determine the electron's speed, v. (in term of c.)
What is the energy of a photon whose momentum is the same as a proton with...
What is the energy of a photon whose momentum is the same as a proton with the proton’s Kinetic energy being 100 MeV? What is the velocity of the proton? If it enters a magnetic field of 2T what is the radius of curvature of its path?
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of...
Calculate the speed (in m/s) of an electron and a proton with a kinetic energy of 1.70 electron volt (eV). (The electron and proton masses are me = 9.11 ✕ 10−31 kg and mp = 1.67 ✕ 10−27 kg. Boltzmann's constant is kB = 1.38 ✕ 10−23 J/K.) (a) an electron m/s (b) a proton m/s (c) Calculate the average translational kinetic energy in eV of a 3.15 ✕ 102 K ideal gas particle. (Recall from Topic 10 that 1...
Antiproton of kinetic energy E_k collides (bumps) with a proton at rest. How much energy is...
Antiproton of kinetic energy E_k collides (bumps) with a proton at rest. How much energy is available for the production of new particles that have a mass. relativistic calculation is needed and a must!
A proton moves with a speed of 0.895c. (a) Calculate its rest energy. _____MeV (b) Calculate...
A proton moves with a speed of 0.895c. (a) Calculate its rest energy. _____MeV (b) Calculate its total energy. ____GeV (c) Calculate its kinetic energy._____GeV
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy...
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy theorem to find the work required to increase its speed to the following speeds. A. .710c answer in units of MeV? b..936c answer in units of Gev?
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy...
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy theorem to find the work required to increase its speed to the following speeds. (a) 0.530c MeV (b) 0.940c GeV
(a) Find the linear momentum and kinetic energy of a bullet of mass 5.70  10-2 kg moving...
(a) Find the linear momentum and kinetic energy of a bullet of mass 5.70  10-2 kg moving at a speed of 330 m/s. linear momentum = kinetic energy = (b) Find the linear momentum and kinetic energy of a football player of mass 111 kg moving at a speed of 10.0 m/s. linear momentum = kinetic energy = (c) Find the linear momentum and kinetic energy of a truck of mass 1.00  104 kg moving at a speed of 20.5 m/s. linear...
What is the magnitude of the relativistic momentum of a proton with a relativistic total energy...
What is the magnitude of the relativistic momentum of a proton with a relativistic total energy of 3.8 × 10-10 J?
1. Show that the Kinetic Energy and the Momentum are conserved in this system. (Remember that...
1. Show that the Kinetic Energy and the Momentum are conserved in this system. (Remember that momentum is a vector, so you need to show the conservation of the momentum in x and y directions separately.) Data: Before the collision: m1= 1kg v1x =1 m/s v1y=0 m/s m2=1kg v2x=-1m/s v2y=0 m/s After the collision: m1= 1kg v1x =-0.778 m/s v1y=-0.629 m/s m2=1kg v2x= 0.778 m/s v2y=0.629 m/s 2. From the data, calculate the direction(angles) of the final velocities of the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT