In: Physics
A proton in a high-energy accelerator moves with a speed of c/2. Use the work–kinetic energy theorem to find the work required to increase its speed to the following speeds.
A. .710c answer in units of MeV?
b..936c answer in units of Gev?
E = m c2
m = mo / SQRT(1 - v2/c2)
Eo = mo c2
KE = E - Eo
KE = mo c2 [ {1/SQRT(1 - v2/c2)} - 1]
Eo = mo c2
Eo = (1.672 x 10 - 27 kg)(3 x 108 m/s)2
Eo = 5.016 x 10 - 11 J
1 eV = 1.6 x 10 - 19 J
1 MeV = 1.6 x 10 - 16 J
Therefore,
Eo = 5.016 x 10 - 11 J [1 MeV / 1.6 x 10 - 16 J]
Eo = 313 500 Mev
Eo = 313.5 Gev
E = m c2
m = mo / SQRT(1 - v2/c2)
Eorig = [mo / SQRT(1 - vorig2/c2)] c2
Eorig = [mo c2][1/ SQRT(1 - vorig2/c2)]
Eorig = [313.5 Gev][1/ SQRT(1 - {0.50 c}2/c2)]
Eorig = [313.5 Gev][1/ SQRT(1 - {0.50}2)]
Eorig = [313.5 Gev][1/ SQRT(1 - 0.25)]
Eorig = [313.5 Gev][1/ SQRT(0.75)]
Eorig = [313.5 Gev][1/ 0.866]
Eorig = [313.5 Gev][1.155]
Eorig = 362 Gev
Ea = [mo / SQRT(1 - va2/c2)] c2
Ea = [mo c2][1/ SQRT(1 - va2/c2)]
Ea = [313.5 Gev][1/ SQRT(1 - {0.710 c}2/c2)]
Ea = [313.5 Gev][1/ SQRT(1 - {0.710}2)]
Ea = [313.5 Gev][1/ SQRT(1 - 0.5041)]
Ea = [313.5 Gev][1/ SQRT(0.4959)]
Ea = 446 GeV
Ea = Ea - Eorig
Ea = (446 - 362) GeV
Ea = 84 GeV = 8.4000E+13 mev
Eb = [mo / SQRT(1 - vb2/c2)] c2
Eb = [mo c2][1/ SQRT(1 - vb2/c2)]
Eb = [313.5 Gev][1/ SQRT(1 - {0.936 c}2/c2)]
Eb = [313.5 Gev][1/ SQRT(1 - {0.936}2)]
Eb = [313.5 Gev][1/ SQRT(1 - 0.876)]
Eb = 890GeV
Eb = Eb - Eorig
Eb = (890 - 362) GeV
Eb = 528 GeV