Question

In: Physics

12.64 A dumbbell has a mass m on either end of a rod of length 2a....

12.64

A dumbbell has a mass m on either end of a rod of length 2a. The center of the dumbbell is a distance r from the center of the Earth, and the dumbbell is aligned radially. If ra, the difference in the gravitational force exerted on the two masses by the Earth is approximately 4GmMEa/r3. (Note: The difference in force causes a tension in the rod connecting the masses. We refer to this as a tidal force.)
Suppose the rod connecting the two masses m is removed. In this case, the only force between the two masses is their mutual gravitational attraction. In addition, suppose the masses are spheres of radius a and mass m=43πa3ρ that touch each other. (The Greek letter ρ stands for the density of the masses.)

Part A

Write an expression for the gravitational force between the masses m.

Express your answer in terms of the variables a, ρ, and appropriate constants.

F=?

Part B

Find the distance from the center of the Earth, r, for which the gravitational force found in part A is equal to the tidal force (4GmMEa/r3). This distance is known as the Roche limit.

Express your answer in terms of the variables ME, ρ, and appropriate constants.

r=?

Part C

Calculate the Roche limit for Saturn, assuming ρ=3330kg/m3. (The famous rings of Saturn are within the Roche limit for that planet. Thus, the innumerable small objects, composed mostly of ice, that make up the rings will never coalesce to form a moon.)

Express your answer using three significant figures.

r_S=?

Please explain the answers. Thanks

Solutions

Expert Solution


Related Solutions

Attached to each end of a thin steel rod of length 1.10 m and mass 6.60...
Attached to each end of a thin steel rod of length 1.10 m and mass 6.60 kg is a small ball of mass 1.07 kg. The rod is constrained to rotate in a horizontal plane about a vertical axis through its midpoint. At a certain instant, it is rotating at 39.0 rev/s. Because of friction, it slows to a stop in 32.0 s. Assuming a constant retarding torque due to friction, find the following. A) Angular Acceleration rad/sec^2 B) Retarding...
A thin copper rod has a mass per unit length of 0.1 kg/m. What is the...
A thin copper rod has a mass per unit length of 0.1 kg/m. What is the minimum current in the rod that would allow it to levitate above the ground in a magnetic field of magnitude 0.5 T? (g = 10.0 m/s2) 2.9 A 2.5 A 2.2 A 2.0 A 1.8 A
A slender rod with length L has a mass per unit length that varies with distance...
A slender rod with length L has a mass per unit length that varies with distance from the left end, where ? = 0, according to ??/?? = ??, where ? has units of kg/m^2 a. Calculate the total mass M of the rod in terms of ? and L. b. Use the equation ? = ∫ ?=?? to calculate the moment of inertia of the rod for an axis at the left end, perpendicular to the rod. Express your...
A uniform rod of mass 2.20 kg and length 2.00 m is capable ofrotating about...
A uniform rod of mass 2.20 kg and length 2.00 m is capable of rotating about an axis passing through its center and perpendicular to its length. A mass m1 = 4.90 kg is attached to one end and a second mass m2 = 2.60 kg is attached to the other end of the rod. Treat the two masses as point particles. At the origina of an xy-coordinate plane a rod of length labeled l rotates around it's midpoint. Attached to...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes...
A uniform rod of length 2.00 m and mass 5.00 kg is suspended by two ropes of negligible mass. The rope at the lower end is horizontal. The rope at the upper end makes an angle φ = 30.0◦ with the vertical. φ θ (a) Draw a free body diagram for the rod. (b) What is the tension in the upper rope? (c) What is the tension in the lower (horizontal) rope? (d) What is the angle θ the rod...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a...
A uniform thin rod of length 0.4 m and mass 0.5 kg can rotate in a horizontal plane about a vertical axis on the left end of the rod. The rod is at rest when a 10.0-g bullet traveling in the horizontal plane of the rod is fired into the right end of the rod at an angle 90o with the rod. The bullet lodges in the rod and the angular velocity of the rod is 10 rad/s immediately after...
A thin rod (length = 1.85 m) is oriented vertically, with its bottom end attached to...
A thin rod (length = 1.85 m) is oriented vertically, with its bottom end attached to the floor by means of a frictionless hinge. The mass of the rod may be ignored, compared to the mass of the object fixed to the top of the rod. The rod, starting from rest, tips over and rotates downward. (a) What is the angular speed of the rod just before it strikes the floor? (Hint: Consider using the principle of conservation of mechanical...
Mounted on a low-mass rod of length 0.20 m are four balls (see figure below)
Mounted on a low-mass rod of length 0.20 m are four balls (see figure below). Two balls (shown in red on the diagram), each of mass 0.84 kg, are mounted at opposite ends of the rod. Two other balls, each of mass 0.31 kg (shown in blue on the diagram), are each mounted a distance 0.05 m from the center of the rod. The rod rotates on an axle through the center of the rod (indicated by the "X" in...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 3.7 seconds. Calculate the angular momentum of the rod at both the points . Explain the...
A thin rod (mass 8.28 kg, length 8.04 m) is sitting on a horizontal, frictionless table....
A thin rod (mass 8.28 kg, length 8.04 m) is sitting on a horizontal, frictionless table. There is a 0.626 kg frog sitting on the very end of the rod; you can treat the frog as a point particle. Suddenly the frog jumps off at speed 4.75 m/s, moving horizontally and perpendicular to the rod. Find ω, the angular speed of the rod after the frog jumps off, in rad/s.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT