Question

In: Physics

Read: A block, with mass 1.17 kg sitting on an incline plane at 5.20° with a...

Read: A block, with mass 1.17 kg sitting on an incline plane at 5.20° with a friction coefficient, ??=0.450, is attached to another freely hanging block that weighs 2.01 kg. A pulley with mass, .423 kg, is between them with a radius of .0810m.

Task: Calculate the translational acceleration of the system.

List: Givens, Principle of Physics used, and Solve

Solutions

Expert Solution

The concept used is of balancing the forces , obtained acceleration is same for both the blocks because it is the connected system motion , initially i consider or assume the direction of movement and then apply the force balance in both x and y direction then i analyse that my result ( acceleration ) comes out to be positive which means i consider a correct direction , if it comes out to be negative then it means direction will be opposite to what i considered.

kindly upvote my answer , if you like , by clicking on the like button.


Related Solutions

A block of 70 kg  kg mass m climbs an incline plane which is making 85 degrees...
A block of 70 kg  kg mass m climbs an incline plane which is making 85 degrees with the horizontal with an initial velocity 30 m/s . How long time later does the block return to its initial position If the static, kinetic friction constant is 0.2 and gravity is 9.8m/s2? Please write explicit solution
A block of 28 kgkg  kg mass m climbs an incline plane which is making  66 degreesdegrees degrees...
A block of 28 kgkg  kg mass m climbs an incline plane which is making  66 degreesdegrees degrees with the horizontal with an initial velocity 32 m/sm/s .? a)How long time later does the block return to its initial position If the static, kinetic friction constant is 0.2 and gravity is 9.8m/s2?
A block with mass m1 = 8.5 kg is on an incline with an angle θ...
A block with mass m1 = 8.5 kg is on an incline with an angle θ = 29° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? ) Now with friction, the acceleration is measured to be only a = 3.61 m/s2. What is the coefficient of kinetic friction between the incline and the...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.25 and μs = 0.275. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, what is the magnitude of the acceleration of the block after it...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 31° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, the acceleration is measured to be only a = 3.13 m/s2. What is the coefficient of kinetic friction between the incline and the block? 3)To...
A block with mass m1 = 9.4 kg is on an incline with an angle θ...
A block with mass m1 = 9.4 kg is on an incline with an angle θ = 34° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? m/s2 2) Now with friction, the acceleration is measured to be only a = 3.73 m/s2. What is the coefficient of kinetic friction between the incline and...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
A block of mass 5 kg is sitting on a frictionless surface. The block initially has...
A block of mass 5 kg is sitting on a frictionless surface. The block initially has a velocity of 3 m/s. A force of 9 N is applied for 2 s.   What is the Initial momentum of the block? kg m/s Tries 0/2 What is the Initial Kinetic Energy of the block? J Tries 0/2 What is the change in momentum of the block?   Kg m/s Tries 0/2 What is the final momentum of the block? kg m/s Tries 0/2...
A 4.0-kg block is on an incline plane of 30 degrees angle with respect to horizontal....
A 4.0-kg block is on an incline plane of 30 degrees angle with respect to horizontal. a)What is the minimum coefficient of static friction (μs)min is need to prevent it from sliding down? b) If the surface μs is 0.30, less than (μs)min now, how much force(F) is needed to apply to the block horizontally to prevent it from sliding down?c) If F is doubled, what’s the acceleration of the block up the incline? Assume the coefficient of kinetic friction...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT