Question

In: Physics

A block of 70 kg  kg mass m climbs an incline plane which is making 85 degrees...

A block of 70 kg  kg mass m climbs an incline plane which is making 85 degrees with the horizontal with an initial velocity 30 m/s .

How long time later does the block return to its initial position If the static, kinetic friction constant is 0.2 and gravity is 9.8m/s2?

Please write explicit solution

Solutions

Expert Solution


Distance covered during upward motion is

Now when block start moving Downward, Direction of friction Force will become in Upward direction parallel to incline,

Hence

Now acceleration is

Now from equation of motion;

Now from equation of motion

Time require to downward motion = 5.3232 seconds

Total time taken by block to return its initial position = 5.3232+3.02=8.34 seconds.


Related Solutions

A block of 28 kgkg  kg mass m climbs an incline plane which is making  66 degreesdegrees degrees...
A block of 28 kgkg  kg mass m climbs an incline plane which is making  66 degreesdegrees degrees with the horizontal with an initial velocity 32 m/sm/s .? a)How long time later does the block return to its initial position If the static, kinetic friction constant is 0.2 and gravity is 9.8m/s2?
A 4.0-kg block is on an incline plane of 30 degrees angle with respect to horizontal....
A 4.0-kg block is on an incline plane of 30 degrees angle with respect to horizontal. a)What is the minimum coefficient of static friction (μs)min is need to prevent it from sliding down? b) If the surface μs is 0.30, less than (μs)min now, how much force(F) is needed to apply to the block horizontally to prevent it from sliding down?c) If F is doubled, what’s the acceleration of the block up the incline? Assume the coefficient of kinetic friction...
Read: A block, with mass 1.17 kg sitting on an incline plane at 5.20° with a...
Read: A block, with mass 1.17 kg sitting on an incline plane at 5.20° with a friction coefficient, ??=0.450, is attached to another freely hanging block that weighs 2.01 kg. A pulley with mass, .423 kg, is between them with a radius of .0810m. Task: Calculate the translational acceleration of the system. List: Givens, Principle of Physics used, and Solve
A block of mass m = 3.5 kg is on an inclined plane with a coefficient...
A block of mass m = 3.5 kg is on an inclined plane with a coefficient of friction μ1 = 0.23, at an initial height h = 0.46 m above the ground. The plane is inclined at an angle θ = 42°. The block is then compressed against a spring a distance Δx = 0.11 m from its equilibrium point (the spring has a spring constant of k1 = 39 N/m) and released. At the bottom of the inclined plane...
A 1.50-kg block is on a frictionless, 30 degrees inclined plane. The block is attached to...
A 1.50-kg block is on a frictionless, 30 degrees inclined plane. The block is attached to a spring (k = 40.0N/m ) that is fixed to a wall at the bottom of the incline. A light string attached to the block runs over a frictionless pulley to a 60.0-g suspended mass. The suspended mass is given an initial downward speed of 1.40m/s. How far does it drop before coming to rest? (Assume the spring is unlimited in how far it...
A block with mass m1 = 8.5 kg is on an incline with an angle θ...
A block with mass m1 = 8.5 kg is on an incline with an angle θ = 29° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? ) Now with friction, the acceleration is measured to be only a = 3.61 m/s2. What is the coefficient of kinetic friction between the incline and the...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 27° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.25 and μs = 0.275. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, what is the magnitude of the acceleration of the block after it...
A block with mass m1 = 8.9 kg is on an incline with an angle θ...
A block with mass m1 = 8.9 kg is on an incline with an angle θ = 31° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1)When there is no friction, what is the magnitude of the acceleration of the block? 2)Now with friction, the acceleration is measured to be only a = 3.13 m/s2. What is the coefficient of kinetic friction between the incline and the block? 3)To...
A block with mass m1 = 9.4 kg is on an incline with an angle θ...
A block with mass m1 = 9.4 kg is on an incline with an angle θ = 34° with respect to the horizontal. For the first question there is no friction between the incline and the block. 1) When there is no friction, what is the magnitude of the acceleration of the block? m/s2 2) Now with friction, the acceleration is measured to be only a = 3.73 m/s2. What is the coefficient of kinetic friction between the incline and...
A block with mass m1 = 8.7 kg is on an incline with an angle θ...
A block with mass m1 = 8.7 kg is on an incline with an angle θ = 38° with respect to the horizontal. For the first question there is no friction, but for the rest of this problem the coefficients of friction are: μk = 0.34 and μs = 0.374. 1) When there is no friction, what is the magnitude of the acceleration of the block? 2) Now with friction, what is the magnitude of the acceleration of the block...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT