Question

In: Statistics and Probability

Let X be the random variable for the number of heads obtained when three fair coins...

Let X be the random variable for the number of heads obtained when three fair coins are tossed:

(1) What is the probability function?

(2) What is the mean?

(3) What is the variance?

(4) What is the mode?

Solutions

Expert Solution

1)

The random variable X = number of heads obtained when three fair coins are tossed.

The possible outcomes are,

S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

The probability distribution is,

x p(X)
0 1/8
1 3/8
2 3/8
3 1/8

2)

The expected value (mean) for the random variable x is obtained using the following formula,

From the probability distribution table,

x p(X) x*P(X)
0 0.125 0
1 0.375 0.375
2 0.375 0.75
3 0.125 0.375
Sum 1 1.5

3)

The standard deviation value for the random variable x is obtained using the following formula,

From the probability distribution table,

x p(X) x*P(X) (x^2)*P(X)
0 0.125 0 0
1 0.375 0.375 0.375
2 0.375 0.75 1.5
3 0.125 0.375 1.125
Sum 1 1.5 3

4)

The mode is the most frequent value or most probable value in the data set. In this case,

mode = 1 and 2


Related Solutions

Three fair coins are flipped independently. Let X be the number of heads among the three...
Three fair coins are flipped independently. Let X be the number of heads among the three coins. (1) Write down all possible values that X can take. (2) Construct the probability mass function of X. (3) What is the probability that we observe two or more heads. (i.e., P(X ≥ 2)) (4) Compute E[X] and Var(X).
4 fair coins are tossed. Let X be the number of heads and Y be the...
4 fair coins are tossed. Let X be the number of heads and Y be the number of tails. Find Var(X-Y) Solution: 3.5 Why?
Two coins are tossed at the same time. Let random variable be the number of heads...
Two coins are tossed at the same time. Let random variable be the number of heads showing. a) Construct a probability distribution for b) Find the expected value of the number of heads.
1. Suppose four distinct, fair coins are tossed. Let the random variable X be the number...
1. Suppose four distinct, fair coins are tossed. Let the random variable X be the number of heads. Write the probability mass function f(x). Graph f(x). 2.  For the probability mass function obtained, what is the cumulative distribution function F(x)? Graph F(x). 3. Find the mean (expected value) of the random variable X given in part 1 4. Find the variance of the random variable X given in part 1.
A coin is tossed three times. X is the random variable for the number of heads...
A coin is tossed three times. X is the random variable for the number of heads occurring. a) Construct the probability distribution for the random variable X, the number of head occurring. b) Find P(x2). c) Find P(x1). d) Find the mean and the standard deviation of the probability distribution for the random variable X, the number of heads occurring.
Let X be the random variable for the sum obtained by rolling two fair dice. (1)...
Let X be the random variable for the sum obtained by rolling two fair dice. (1) What is the probability density function? (2) What is the cumulative probability density function? (3) What is the expected value? (4) What is the variance?
Consider independent trials of flipping fair coins (outcomes are heads or tails). Define the random variable...
Consider independent trials of flipping fair coins (outcomes are heads or tails). Define the random variable T to be the first time that two heads come up in a row (so, for the outcome HT HT HH... we have T = 6). (a) Compute P(T = i) for i = 1, 2, 3, 4, 5. (b) Compute P(T = n) for n > 5.
Q7 A fair coin is tossed three times independently: let X denote the number of heads...
Q7 A fair coin is tossed three times independently: let X denote the number of heads on the first toss (i.e., X = 1 if the first toss is a head; otherwise X = 0) and Y denote the total number of heads. Hint: first figure out the possible values of X and Y , then complete the table cell by cell. Marginalize the joint probability mass function of X and Y in the previous qusetion to get marginal PMF’s.
Let X be the number of heads in two tosses of a fair coin. Suppose a...
Let X be the number of heads in two tosses of a fair coin. Suppose a fair die is rolled X+1 times after the value of X is determined from the coin tosses. Let Y denote the total of the face values of the X+1 rolls of the die. Find E[Y | X = x] and V[Y | X = x] as expressions involving x. Use these conditional expected values to find E[Y] and V[Y].
Let W be a random variable giving the number of heads minus the number of tails...
Let W be a random variable giving the number of heads minus the number of tails in three independent tosses of an unfair coin where p = P(H) = 1 3 , and q = P(T) = 2 3 . (a) List the elements of the sample space S for the three tosses of the coin and to each sample point assign a value of W. (b) Find P(−1 ≤ W < 1). (c) Draw a graph of the probability...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT