Question

In: Statistics and Probability

Let W be a random variable giving the number of heads minus the number of tails...

Let W be a random variable giving the number of heads minus the number of tails in three independent tosses of an unfair coin where p = P(H) = 1 3 , and q = P(T) = 2 3 . (a) List the elements of the sample space S for the three tosses of the coin and to each sample point assign a value of W. (b) Find P(−1 ≤ W < 1). (c) Draw a graph of the probability density function f(t) of W, and the cumulative distribution function F(t). (d) Compute µW = E(W) and σ 2 W .

Solutions

Expert Solution

I hope you'll understand the solution provided by me since it's step by step and conceptual.

Please do like it, and comment, if you've any more queries. Thanks.


Related Solutions

Q–2: [5+2+3 Marks] Let X be a random variable giving the number of heads minus the...
Q–2: [5+2+3 Marks] Let X be a random variable giving the number of heads minus the number of tails in three tosses of a coin. a) Find the probability distribution function of the random variable X. b) Find P(−1 ≤ X ≤ 3). c) Find E(X).
Let X be the number of heads and let Y be the number of tails in...
Let X be the number of heads and let Y be the number of tails in 6 flips of a fair coin. Show that E(X · Y ) 6= E(X)E(Y ).
Two coins are tossed at the same time. Let random variable be the number of heads...
Two coins are tossed at the same time. Let random variable be the number of heads showing. a) Construct a probability distribution for b) Find the expected value of the number of heads.
Let X be the random variable for the number of heads obtained when three fair coins...
Let X be the random variable for the number of heads obtained when three fair coins are tossed: (1) What is the probability function? (2) What is the mean? (3) What is the variance? (4) What is the mode?
Consider independent trials of flipping fair coins (outcomes are heads or tails). Define the random variable...
Consider independent trials of flipping fair coins (outcomes are heads or tails). Define the random variable T to be the first time that two heads come up in a row (so, for the outcome HT HT HH... we have T = 6). (a) Compute P(T = i) for i = 1, 2, 3, 4, 5. (b) Compute P(T = n) for n > 5.
What is the probability that the random variable X (which is the number of Heads from...
What is the probability that the random variable X (which is the number of Heads from flipping a coin 5 times) is equal to 0?
A coin is tossed three times. X is the random variable for the number of heads...
A coin is tossed three times. X is the random variable for the number of heads occurring. a) Construct the probability distribution for the random variable X, the number of head occurring. b) Find P(x2). c) Find P(x1). d) Find the mean and the standard deviation of the probability distribution for the random variable X, the number of heads occurring.
Let W be a discrete random variable and Pr(W = k) = 1/6, k = 1,...
Let W be a discrete random variable and Pr(W = k) = 1/6, k = 1, 2 ,....., 6. Define X = { W,  if W <= 3; 1,  if W >= 4; } and Y = { 3,  if W <= 3; 7 -W,  if W >= 4; } (a) Find the joint probability mass function of (X, Y ) and compute Pr(X +Y = 4). (b) Find the correlation Cor(X, Y ). Are X and Y independent? Explain.
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a...
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a coin for 1000 times. Use two different methods to find number of heads and tails Use for loops Use vectors in MATLAB. Repeat this experiment to find running average of flipping a coin for 200 and 2000 times. Plot the running average for two experiments using subplot functions
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a...
Coin toss experiment In this experiment, determine the number of heads and tails after flipping a coin for 1000 times. Use two different methods to find number of heads and tails: Use for loops. Use vectors in MATLAB. Repeat this experiment to find running average of flipping a coin for 200 and 2000 times. Plot the running average for two experiments using subplot functions.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT