Question

In: Physics

Two identical double-pipe heat exchangers are constructed of a 2-in standard schedule 40 pipe placed inside...

Two identical double-pipe heat exchangers are constructed of a 2-in standard schedule 40 pipe placed inside a 3-in standard pipe. The length of the exchangers is 10 ft; 40 gal/min of water initially at 80◦F is to be heated by passing through the inner
pipes of the exchangers in a series arrangement, and 30 gal/min of water at 120◦F and 30 gal/min of water at 200◦F are available to accomplish the heating. The two heating streams may be mixed in any way desired before and after they enter the heat exchangers. Determine the flow arrangement for optimum performance (maximum heat transfer) and the total heat transfer under these conditions. Use both NTU and LMTD methods.

Solutions

Expert Solution


Related Solutions

Find the length of a 0.5 in. schedule 40 pipe required to heat water from 60...
Find the length of a 0.5 in. schedule 40 pipe required to heat water from 60 deg. f to 160 deg. f using condended steam at 260 deg f given water flowing at 600 lb/min.
A 10 ft long double pipe heat exchanger consisting of a 1 in sch 40 (1.315...
A 10 ft long double pipe heat exchanger consisting of a 1 in sch 40 (1.315 in OD, 1.029 in ID) inner pipe within a 4 in sch 40 (3.998 in ID) outer pipe uses chilled water to cool hot glycerin (the water flows in the annulus and glycerin in the inner pipe). The pipes are constructed of AISI 302 stainless steel. The mean velocities of the water and glycerin are 4 ft/s and 1.3 ft/s, respectively. If the average...
A double-pipe heat exchanger is used to condense steam at 40°C saturation temperature. Water at an...
A double-pipe heat exchanger is used to condense steam at 40°C saturation temperature. Water at an average bulk temperature of 20°C flows at 2 m/s through the inner tube (copper, 2.54 cm ID, 3.05 cm OD). Steam at its saturation temperature flows in the annulus formed between the outer surface of the inner tube and outer tube of 6 cm ID. The average heat transfer coefficient of the condensing steam is 6,000 W/m2 ? K, and the thermal resistance of...
A 2 in schedule 40 pipe insulated with 1 in of 85% magnesia is carrying a...
A 2 in schedule 40 pipe insulated with 1 in of 85% magnesia is carrying a fluid at 800°F. The insulated pipe passes through a room at 80°F, and the outside surface of the magnesia is at 100°F. Please calculate The total heat loss per linear foot of pipe (in Btu/h), The temperature of the inside wall of the pipe (in *F), and The heat transfer coefficient between the fluid inside the pipe and the inside pipe wall (in Btu/h?ft2?F°)....
For the double-pipe heat exchanger of Problem 3.10, calculate the outlet temperatures of the two streams...
For the double-pipe heat exchanger of Problem 3.10, calculate the outlet temperatures of the two streams when the unit is first placed in service. Q:3.10 A hydrocarbon stream is to be cooled from 200◦F to 130◦F using 10,800 lb/h of water with a range of 75–125◦F. A double-pipe heat exchanger comprised of 25 ft long carbon steel hairpins will be used. The inner and outer pipes are 1.5- and 3.5-in. schedule 40, respectively. The hydrocarbon will flow through the inner...
Cold water inside / outside diameter in the same axis two pipe heat exchanger used as...
Cold water inside / outside diameter in the same axis two pipe heat exchanger used as engine oil cooler It enters the 25/30 mm steel pipe at a temperature of 15 degrees at a speed of 0.5 m / s, Take off at a temperature of 25 degrees.Hot oil, on the inside / outside diameter of 40/46 mm steel pipe, at a temperature of 60 degrees with a speed of 0.25 m / s. enters.it is desired to cool the...
A counter-flow double-pipe heat exchanger is to heat water from 20ºC to 80ºC at a rate...
A counter-flow double-pipe heat exchanger is to heat water from 20ºC to 80ºC at a rate of 1.2 kg/s. The heating is to be accomplished by geothermal water available at 160ºC at a mass flow rate of 2 kg/s. The inner tube is thin-walled, and has a diameter of 1.5 cm. If the overall heat transfer coefficient of the heat exchanger is 640 W/(m2.ºC), determine the length of the heat exchanger required to achieve the desired heating using the effectiveness-NTU...
16. List the two elements involved in preparing for maintenance on heat exchangers. 21. List two...
16. List the two elements involved in preparing for maintenance on heat exchangers. 21. List two methods of cleaning the outside surfaces of tubes in a large shell- and-tube heat exchanger 26. Name the four types of plugs used in shell-and-tube heat exchangers to seal leaking tubes 28. Why is maintenance of a smaller heat exchanger done more easily in the shop?
A double-pipe heat exchanger operating in counter current mode is to heat a fluid(Cp 1.7 kJ/kg...
A double-pipe heat exchanger operating in counter current mode is to heat a fluid(Cp 1.7 kJ/kg K) from 50°C to 95°C at a rate of 4.5 kg/s. The heating is to be accomplished by hot fluid (Cp=1.97 kJ/kg K) available at 200°C at a mass flow rate of 6 kg/s. The inner tube is thin-walled and has a diameter of 4 cm. If the overall heat transfer coefficient of the heat exchanger is 680 W/m2 °C, determine the length of...
A double pipe heat exchanger is to be designed to cool 5 gal/min of hot oil...
A double pipe heat exchanger is to be designed to cool 5 gal/min of hot oil from 250°F to 120°F using 10 gal/min of cooling water available at 70°F. The heat exchanger is to consist of sections of 0.75 inch 16 BWG copper tubing inside 1.5 inch 16 BWG tubing; the water flows in the annular space. The shell-side heat transfer coefficient for this system is known to be 737 Btu/hr×ft2×°F. a) Estimate the required length of the countercurrent exchanger,...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT