In: Finance
Carnes Cosmetics Co.'s stock price is $40, and it recently paid a $1.00 dividend. This dividend is expected to grow by 20% for the next 3 years, then grow forever at a constant rate, g; and rs = 11%. At what constant rate is the stock expected to grow after Year 3? Do not round intermediate calculations. Round your answer to two decimal places.
| Given, | |||||||||
| Current Dividend = D0 = $1 | |||||||||
| Growth Rate for Next 3 Years = 20% | |||||||||
| Constant Growth Rate = g = ? | |||||||||
| Current Stock Price = P0 = $40 | |||||||||
| rs = Cost of Equity = 11% | |||||||||
| Now, | |||||||||
| Dividend at the end of year 1 = D1 | |||||||||
| = D0(1+Growth Rate) | |||||||||
| = $1(1+20%) | |||||||||
| = $1(1.20) | |||||||||
| = $1.20 | |||||||||
| Dividend at the end of year 2 = D2 | |||||||||
| = D1(1+Growth Rate) | |||||||||
| = $1.20(1+20%) | |||||||||
| = $1.20(1.20) | |||||||||
| = $1.44 | |||||||||
| Dividend at the end of year 3 = D3 | |||||||||
| = D2(1+Growth Rate) | |||||||||
| = $1.44(1+20%) | |||||||||
| = $1.44(1.20) | |||||||||
| = $1.728 | |||||||||
| Dividend at the end of year 4 = D4 | |||||||||
| = D3(1+Constant Growth Rate) | |||||||||
| = $1.728(1+g) | |||||||||
| Terminal Value of Dividend as it grows Constantly after 3 years | |||||||||
| = D4 / (rs - g) | |||||||||
| = $1.728*(1+g) / (11% - g) | |||||||||
| So, | |||||||||
| Current Price of Stock | |||||||||
| = Present Value Dividends + Present Value of Terminal Value of Dividend | |||||||||
| $40 = 1.20/(1+11%)1 + 1.44/(1+11%)2 + 1.728/(1+11%)3 + $1.728*(1+g)/[(11%-g)*(1+11%)3] | |||||||||
| $40 = 1.20/(1.11)1 + 1.44/(1.11)2 + 1.728/(1.11)3 + $1.728*(1+g)/[(11%-g)*(1.11)3] | |||||||||
| $40 = 1.20/(1.11) + 1.44/(1.2321) + 1.728/(1.367631) + $1.728*(1+g)/[(11%-g)*(1.367631)] | |||||||||
| $40 = 1.081081 + 1.168736 + 1.263499 + $1.728*(1+g)/[(11%-g)*(1.367631)] | |||||||||
| $40 = $3.513316 + $1.728*(1+g)/[(11%-g)*(1.367631)] | |||||||||
| $40 - $3.513316 = $1.728*(1+g)/[(11%-g)*(1.367631)] | |||||||||
| $36.486684 = $1.728*(1+g)/[(11%-g)*(1.367631)] | |||||||||
| $36.486684*1.367631 = ($1.728 + $1.728*g) / (11%-g) | |||||||||
| $49.900320 = ($1.728 + $1.728*g) / (11%-g) | |||||||||
| $49.900320*(11%-g) = $1.728 + $1.728*g | |||||||||
| $49.900320*11% - $49.900320*g = $1.728 + $1.728*g | |||||||||
| $5.4890022 - $49.900320g = $1.728 + $1.728g | |||||||||
| $49.900320g+$1.728g = $5.4890022-$1.728 | |||||||||
| $51.62832g = $3.7610022 | |||||||||
| g = $3.7610022/$51.62832 | |||||||||
| g = 0.0728 | |||||||||
| i.e. 7.28% | |||||||||