In: Finance
Carnes Cosmetics Co.'s stock price is $64.34, and it recently paid a $1.25 dividend. This dividend is expected to grow by 19% for the next 3 years, then grow forever at a constant rate, g; and rs = 15%. At what constant rate is the stock expected to grow after Year 3? Round your answer to two decimal places. Do not round your intermediate calculations.
g1 | Growth Rate in next three years=19% | 0.19 | |||||||
D0 | Recently paid dividend in Year0 | $1.25 | |||||||
D1=D0*(1+g1) | Expected Dividend in Year1 | $1.49 | |||||||
D2=D1*(1+g1) | Expected Dividend in Year2 | $1.77 | |||||||
D3=D2*(1+g1) | Expected Dividend in Year3 | $2.11 | |||||||
Current Stock price=Present Value of future cash flows=$64.34 | |||||||||
Present Value (PV) of Cash Flow: | |||||||||
(Cash Flow)/((1+R)^N) | |||||||||
R=Discount Rate=Required Return=15%=0.15 | |||||||||
N=Year of Cash Flow | |||||||||
g | Constant growth rate fromyear 4 onwards | ||||||||
D4 | Expected dividend in year 4=2.11*(1+g) | ||||||||
P3=D4/(R-g) | Price at end of Year 3 | ||||||||
N | Year | 1 | 2 | 3 | 3 | ||||
D1 | D2 | D3 | P3 | ||||||
A | Cash flow | $1.49 | $1.77 | $2.11 | 2.11*(1+g)/(0.15-g) | ||||
PV=A/(1.15^N) | Present Value of Cash flow | 1.293478 | 1.338469 | 1.385024 | (2.11*(1+g)/((0.15-g)*(1.15^3)) | ||||
Present Value of Cash flow=$64.34=4.017+ | (2.11*(1+g)/((0.15-g)*(1.15^3)) | ||||||||
(2.11*(1+g)/((0.15-g)*(1.15^3))= | 60.323 | ||||||||
(2.11*(1+g)/((0.15-g)*1.520875)= | |||||||||
(1+g)/(0.15-g)= | 43.48045 | ||||||||
1+g=6.522-43.4805*g | |||||||||
44.4805*g=5.522 | |||||||||
g=5.522/44.4805= | 0.124144 | ||||||||
Expected Constant growth rate after Year 3 | 12.41% | ||||||||
D4=D3*(1+g) | Expected dividend in year4 | $2.37 | |||||||
P3=D4/(R-g) | Expected Price in year3 | $91.58 | (2.37/(0.15-0.124144) | ||||||