In: Statistics and Probability
Use the data set below to answer the question.
x | −2 | −1 | 0 | 1 | 2 |
---|---|---|---|---|---|
y | 2 | 2 | 4 | 5 | 5 |
Find a 90% prediction interval for some value of y to be observed in the future when
x = −1.
(Round your answers to three decimal places.)
predicted val=3.6+-1*0.9= | 2.700 |
SSE =Syy-(Sxy)2/Sxx= | 1.100 |
s2 =SSE/(n-2)= | 0.3667 | |
std error σ = | =se =√s2= | 0.6055 |
std error prediction interval= s*√(1+1/n+(x0-x̅)2/Sxx)= | 0.6904 | |||
for 90 % CI value of t= | 2.353 | |||
margin of error E=t*std error = | 1.6248 | |||
lower prediction bound=sample mean-margin of error = | 1.0752 | |||
Upper prediction bound=sample mean+margin of error= | 4.3248 |
90% prediction interval =(1.075 , 4.325)