In: Finance
If $17,000 is invested at 4.5% for 30 years, find the future value if the interest is compounded the following ways. (Round your answers to the nearest cent.)
(a) annually
$  
(b) semiannually
$  
(c) quarterly
$  
(d) monthly
$  
(e) daily (N = 360)
$  
(f) every minute (N = 525,600)
$  
(g) continuously
$  
(h) simple (not compounded)
$
| a) annually: | 
| FV = P ( 1+r/N)^N | 
| FV = 17000 * (1+0.045)^30 | 
| FV = 17000 *3.745318 = 63670.41 | 
| b) semiannually: | 
| FV = P ( 1+r/N)^N | 
| FV = 17000 * (1+0.045/2)^(2*30) | 
| FV = 17000 * (1.0225)^60 | 
| FV = 17000 * 3.800135 = 64602.3 | 
| c) quarterly: | 
| FV = P ( 1+r/N)^N | 
| FV = 17000 * (1+0.045/4)^(4*30) | 
| FV = 17000 * (1.01125)^120 | 
| FV = 17000 * 3.82846 = 65083.82 | 
| d) monthly: | 
| FV = P ( 1+r/N)^N | 
| FV = 17000 * (1+0.045/12)^(12*30) | 
| FV = 17000 * (1.00375)^360 | 
| FV = 17000 * 3.84769805 = 65410.87 | 
| e) daily: | 
| FV = P ( 1+r/N)^N | 
| FV = 17000 * (1+0.045/360)^(360*30) | 
| FV = 17000 * (1.000125)^10800 | 
| FV = 17000 * 3.8571001 = 65570.70 | 
| f) every minute: | 
| FV = P ( 1+r/N)^N | 
| FV = 17000 * (1+0.045/525600)^(525600*30) | 
| FV = 17000 * (1.000000085)^15768000 | 
| FV = 17000 * 3.8201127653 = 64941.92 | 
| g) continuously: | 
| FV = P * e^rt | 
| FV = 17000 * e^(0.045*30) | 
| FV = 17000 * e^1.35 | 
| FV = 17000 * 3.8574255307 = 65576.23 | 
| h) Simple: | 
| FV = P + (PRT) | 
| FV = 17000 + ( 17000*0.045*30) = 39950 |