In: Finance
Year Stock A Returns Stock B Returns
2008 -18.00% -14.50%
2009 33.00 21.80
2010 15.00 30.50
2011 -0.50 -7.60
2012 27.00 26.30
Year Stock C
2008 32.00%
2009 –11.75
2010 10.75
2011 32.25
2012 –6.75
Year | A | B |
2008 | (18.00) | (14.50) |
2009 | 33.00 | 21.80 |
2010 | 15.00 | 30.50 |
2011 | (0.50) | (7.60) |
2012 | 27.00 | 26.30 |
Total | 56.50 | 56.50 |
(a) Average Return (MeanA)= ∑A/n
=56.5/5
=11.30
Average Return (MeanB)= ∑B/n
=56.5/5
=11.30
(b) Portfolio of 50% A and 50% B
Year | A | Weight A | B | Weight B | P |
2008 | (18.00) | 50.00% | (14.50) | 50.00% | (16.25) |
2009 | 33.00 | 50.00% | 21.80 | 50.00% | 27.40 |
2010 | 15.00 | 50.00% | 30.50 | 50.00% | 22.75 |
2011 | (0.50) | 50.00% | (7.60) | 50.00% | (4.05) |
2012 | 27.00 | 50.00% | 26.30 | 50.00% | 26.65 |
Total | 56.50 | 56.50 | 56.50 |
) Average Return of Portfolio (MeanP)= ∑P/n
=56.5/5
=11.30
(a) The standard deviation of returns for each stock and for the portfolio
Year | da=A-MeanA | da2 | db=B-MeanB | db2 | dp=P-MeanP | dp2 |
2008 | (29.30) | 858.49 | (25.80) | 665.64 | (27.55) | 759.00 |
2009 | 21.70 | 470.89 | 10.50 | 110.25 | 16.10 | 259.21 |
2010 | 3.70 | 13.69 | 19.20 | 368.64 | 11.45 | 131.10 |
2011 | (11.80) | 139.24 | (18.90) | 357.21 | (15.35) | 235.62 |
2012 | 15.70 | 246.49 | 15.00 | 225.00 | 15.35 | 235.62 |
Total | 1,728.80 | 1,726.74 | 1,620.56 |
Standard Deviation A = √ ( da2/ n )
=√ (1,728.80 / 5 )
= 18.595
Standard Deviation B = √ ( db2/ n )
=√ (1,726.74 / 5 )
= 18.587
Standard Deviation P = √ ( dp2/ n )
=√ (1,620.56 / 5 )
= 18.00
(b) Calculation of the coefficient of variation for each stock and for the portfolio.
Coefficient of variation( CV)= Standard Deviation / Mean
CV of A= 18.60/11.3
= 1.65
CV of B = 18.59 /11.3
= 1.64
CV of P = 18 / 11.3
= 1.59
(a)average return, standard deviation, and coefficient of variation for Stock C.
Year | C | dc= C - MeanC | dc2 |
2008 | 32.00 | 20.70 | 428.49 |
2009 | -11.75 | -23.05 | 531.30 |
2010 | 10.75 | -0.55 | 0.30 |
2011 | 32.25 | 20.95 | 438.90 |
2012 | -6.75 | -18.05 | 325.80 |
Total | 56.50 | 1,724.80 |
Average Return (MeanC)= ∑C/n
=56.5/5
=11.30
Standard Deviation C = √ ( dC2/ n )
=√ (1,724.80 / 5 )
= 18.573
CV of C = 18.573/11.3
= 1.643
( b )The portfolio now consists of 33.33 % Stock A, 33.33 % Stock B, and 33.33 % Stock C.
C | Weight C | A | Weight A | B | Weight B | P2 | dp2 | (dp2)2 |
32.00 | 0.33 | (18.00) | 0.33 | (14.50) | 0.33 | (0.17) | (11.47) | 131.48 |
(11.75) | 0.33 | 33.00 | 0.33 | 21.80 | 0.33 | 14.35 | 3.05 | 9.30 |
10.75 | 0.33 | 15.00 | 0.33 | 30.50 | 0.33 | 18.75 | 7.45 | 55.50 |
32.25 | 0.33 | (0.50) | 0.33 | (7.60) | 0.33 | 8.05 | (3.25) | 10.56 |
(6.75) | 0.33 | 27.00 | 0.33 | 26.30 | 0.33 | 15.52 | 4.22 | 17.78 |
56.50 | 224.63 | |||||||
Average Return (MeanP2)= ∑P2/n
=56.5/5
=11.30
Standard Deviation P2 = √ ( dP22/ n )
=√ (224.63 / 5 )
= 6.7
CV of P2 = 6.7/11.3
= 0.593
If A, B, C, are invested equally the standard deviation decreases to 6.7. It becomes a safer investment even when the return is the same.