Question

In: Advanced Math

prove by using induction. Prove by using induction. If r is a real number with r...

prove by using induction. Prove by using induction. If r is a real number with r not equal to 1, then for all n that are integers with n greater than or equal to one, r + r^2 + ....+ r^n = r(1-r^n)/(1-r)

Solutions

Expert Solution


Related Solutions

Prove using the principle of mathematical induction: (i) The number of diagonals of a convex polygon...
Prove using the principle of mathematical induction: (i) The number of diagonals of a convex polygon with n vertices is n(n − 3)/2, for n ≥ 4, (ii) 2n < n! for all n > k > 0, discover the value of k before doing induction
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
Prove using mathematical induction: 3.If n is a counting number then 6 divides n^3 - n....
Prove using mathematical induction: 3.If n is a counting number then 6 divides n^3 - n. 4.The sum of any three consecutive perfect cubes is divisible by 9. 5.The sum of the first n perfect squares is: n(n +1)(2n +1)/ 6
Let R be the real line with the Euclidean topology. (a) Prove that R has a...
Let R be the real line with the Euclidean topology. (a) Prove that R has a countable base for its topology. (b) Prove that every open cover of R has a countable subcover.
Prove that {??+?:?,?∈?} is dense in ? if and only if  r is an irrational number.
Prove that {??+?:?,?∈?} is dense in ? if and only if  r is an irrational number.
Prove that {??+?:?,?∈?} is dense in ? if and only if  r is an irrational number.
Prove that {??+?:?,?∈?} is dense in ? if and only if  r is an irrational number.
Prove that {??+?:?,?∈?} is dense in ? if and only if  r is an irrational number.
Prove that {??+?:?,?∈?} is dense in ? if and only if  r is an irrational number.
Prove by induction on n that the number of distinct handshakes between n ≥ 2 people...
Prove by induction on n that the number of distinct handshakes between n ≥ 2 people in a room is n*(n − 1)/2 . Remember to state the inductive hypothesis!
Prove that every real number with a terminating binary representation (finite number
Prove that every real number with a terminating binary representation (finite number of digits to the right of the binary point) also has a terminating decimal representation (finite number of digits to the right of the decimal point).  
Prove that the proof by mathematical induction and the proof by strong induction are equivalent
Prove that the proof by mathematical induction and the proof by strong induction are equivalent
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT