In: Finance
Use the Black-Scholes formula for the following stock:
| Time to expiration | 6 months | |
| Standard deviation | 41% per year | |
| Exercise price | $42 | |
| Stock price | $42 | |
| Annual interest rate | 7% | |
| Dividend | 0 | |
Recalculate the value of the call with the following changes:
| a. | Time to expiration | 3 months | |
| b. | Standard deviation | 20% per year | |
| c. | Exercise price | $50 | |
| d. | Stock price | $50 | |
| e. | Interest rate | 9% | |
Calculate each scenario independently. (Round your answers to 2 decimal places.)
C rises or falls for a, b c d e ?
Value of the call option for a b c d e ?
Solution A>
The value of the option is $5.51. All the formula used are shown in the below excel.
| Type of Option | Call Option | Formulas | 
| Stock Price (S0) | $ 42.00 | |
| Exercise (Strike) Price (K) | $ 42.00 | |
| Time to Maturity (in years) (t) | 0.50 | |
| Annual Risk-Free Rate (r) | 7.00% | |
| Annualized Volatility (σ) | 41.00% | |
| Option Price | $ 5.51 | =$42*0.605-$42*0.96561*0.490 | 
| Additional Calculation Parameters | ||
| ln(S0/K) | - | |
| (r+σ2/2)t | 0.077 | =(7%+(41%^2)/2)*0.5 | 
| σ√t | 0.290 | =41%*SQRT(0.5) | 
| d1 | 0.266 | =0+0.077/0.290 | 
| d2 | (0.024) | =0.266-0.290 | 
| N(d1) | 0.605 | =NORM.S.DIST( 0.266) | 
| N(d2) | 0.490 | =NORM.S.DIST(-0.024) | 
| N(-d1) | 0.395 | =NORM.S.DIST(- 0.266) | 
| N(-d2) | 0.510 | =NORM.S.DIST(-0.024) | 
| e-rt | 0.96561 | =EXP(-7%*0.5) | 
Solution B>
The value of the call falls in Scenario 2.
The value of the option is $2.58. All the formula used are shown in the below excel.
| Type of Option | Call Option | |
| Stock Price (S0) | $ 50.00 | |
| Exercise (Strike) Price (K) | $ 50.00 | |
| Time to Maturity (in years) (t) | 0.25 | |
| Annual Risk-Free Rate (r) | 9.00% | |
| Annualized Volatility (σ) | 20.00% | |
| Option Price | $ 2.58 | =$50*0.608-$50*0.97775*0.569 | 
| Additional Calculation Parameters | ||
| ln(S0/K) | - | |
| (r+σ2/2)t | 0.028 | =(9%+(20%^2)/2)*0.25 | 
| σ√t | 0.100 | =20%*SQRT(0.25) | 
| d1 | 0.275 | =0+0.028/0.100 | 
| d2 | 0.175 | =0.275-0.100 | 
| N(d1) | 0.608 | =NORM.S.DIST(0.275) | 
| N(d2) | 0.569 | =NORM.S.DIST(0.175) | 
| N(-d1) | 0.392 | =NORM.S.DIST(-0.275) | 
| N(-d2) | 0.431 | =NORM.S.DIST(-0.175) | 
| e-rt | 0.97775 | =EXP(-9%*0.25) | 
Note: Give it a thumbs up if it helps! Thanks in advance!