In: Finance
State |
Probability |
Return: Stock A |
Return: Stock B |
Bear |
.25 |
-.02 |
.05 |
Normal |
.50 |
.14 |
.16 |
Bull |
.25 |
.28 |
.10 |
(a) | (b) | ('c) | (a*b) | (a*c) | ||||
State | Probability (p) | Return:
Stock A (rA) |
Return:
Stock B (rB) |
Weighted return stock A | Weighted return Stock B | rA-E(rA) | rB-E(rB) | p*(rA-E(rA))(rB-E(rB)) |
Bear | 0.25 | -0.02 | 0.05 | -0.0050 | 0.0125 | -0.1550 | -0.0675 | 0.0026 |
Normal | 0.50 | 0.14 | 0.16 | 0.0700 | 0.0800 | 0.0050 | 0.0425 | 0.0001 |
Bull | 0.25 | 0.28 | 0.10 | 0.0700 | 0.0250 | 0.1450 | -0.0175 | -0.0006 |
Total | 0.1350 | 0.1175 | -0.0050 | -0.0425 | ||||
Covariance | 0.0021 |
State | Probability (p) | rA-E(rA) | rB-E(rB) | p*(rA-E(rA))^2 | p*(rB-E(rB))^2 |
Bear | 0.25 | -0.1550 | -0.0675 | 0.0060 | 0.0011 |
Normal | 0.50 | 0.0050 | 0.0425 | 0.0000 | 0.0009 |
Bull | 0.25 | 0.1450 | -0.0175 | 0.0053 | 0.0001 |
Total | Variance | 0.0113 | 0.0021 |
Calculated values are:
Stock A | Stock B | |
Expected return | 0.1350 | 0.1175 |
Variance | 0.0113 | 0.0021 |
Covariance | 0.0021 |
On the face of it, it not appear that combining stock A and B into a portfolio will bring diversification benefits because the correlation between the two is (CovarianceA,B)/(varianceA^0.5*varianceB^0.5) = 0.0021/(0.0113^0.5*.0021^0.5) = 0.427. Both have a positive correlation with each other.
Porfolio | Stock A | Stock B |
Weight | 50% | 50% |
E('r) | 0.1350 | 0.1175 |
Variance | 0.0113 | 0.0021 |
Portfolio return | 12.63% | |
Portfolio variance | 0.0044 |