In: Finance
Rate of Return if State Occurs State of Economy Probability of State of Economy Stock A Stock B Recession .25 .03 −.15 Normal .55 .13 .13 Boom .20 .16 .33 a. Calculate the expected return for the two stocks. (Do not round intermediate calculations. Enter your answers as a percent rounded to 2 decimal places.) b. Calculate the standard deviation for the two stocks. (Do not round your intermediate calculations. Enter your answers as a percent rounded to 2 decimal places.)
Part A:
Expected Ret = Sum [ Prob * ret ]
Stock A:
Scenario | Prob | Ret | Prob * Ret |
Receision | 0.2500 | 0.0300 | 0.0075 |
Normal | 0.5500 | 0.1300 | 0.0715 |
Boom | 0.2000 | 0.1600 | 0.0320 |
Expected Ret | 0.1110 |
Expected Ret from stock A is 11.10%
Stock B:
Scenario | Prob | Ret | Prob * Ret |
Receision | 0.2500 | (0.1500) | (0.0375) |
Normal | 0.5500 | 0.1300 | 0.0715 |
Boom | 0.2000 | 0.3300 | 0.0660 |
Expected Ret | 0.1000 |
Expected ret from stock B is 10.00%
Part B:
SD:
Standard deviation is a measure of amount of variation or
dispersion of set of values. It spcifies the risk of set of
values.
SD = SQRT [ SUm [ Prob * (X-AVgX)^2 ] ]
Stock A:
State | Prob | Ret (X) | (X-AvgX) | (X-AvgX)^2 | Prob * (X-Avg X)^2 |
Recision | 0.2500 | 0.0300 | (0.0810) | 0.0066 | 0.0016 |
Normal | 0.5500 | 0.1300 | 0.0190 | 0.0004 | 0.0002 |
Boom | 0.2000 | 0.1600 | 0.0490 | 0.0024 | 0.0005 |
Sum[ Prob * ( X-AvgX)^2 ) ] | 0.00232 | ||||
SD = SQRT [ [ Sum[ Prob * ( X-AvgX)^2 ) ] ] ] | 0.04816 |
SD of Stock A is 4.82%
Stock B:
State | Prob | Ret (X) | (X-AvgX) | (X-AvgX)^2 | Prob * (X-Avg X)^2 |
Recision | 0.2500 | (0.1500) | (0.2500) | 0.0625 | 0.0156 |
Normal | 0.5500 | 0.1300 | 0.0300 | 0.0009 | 0.0005 |
Boom | 0.2000 | 0.3300 | 0.2300 | 0.0529 | 0.0106 |
Sum[ Prob * ( X-AvgX)^2 ) ] | 0.02670 | ||||
SD = SQRT [ [ Sum[ Prob * ( X-AvgX)^2 ) ] ] ] | 0.16340 |
SD of Stock B is 16.34%