In: Finance
Bond A
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =10 |
Bond Price =∑ [(4*1000/100)/(1 + 6/100)^k] + 1000/(1 + 6/100)^10 |
k=1 |
Bond Price = 852.8 |
Bond B
K = N |
Bond Price =∑ [(Annual Coupon)/(1 + YTM)^k] + Par value/(1 + YTM)^N |
k=1 |
K =5 |
Bond Price =∑ [(4*1000/100)/(1 + 6/100)^k] + 1000/(1 + 6/100)^5 |
k=1 |
Bond Price = 915.75 |
Part 1 |
Change in YTM =1 |
Bond A |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =10x2 |
Bond Price =∑ [(4*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^10x2 |
k=1 |
Bond Price = 786.81 |
%age change in price =(New price-Old price)*100/old price |
%age change in price = (786.81-852.8)*100/852.8 |
= -7.74% |
Bond B |
K = Nx2 |
Bond Price =∑ [( Coupon)/(1 + YTM/2)^k] + Par value/(1 + YTM/2)^Nx2 |
k=1 |
K =5x2 |
Bond Price =∑ [(4*1000/200)/(1 + 7/200)^k] + 1000/(1 + 7/200)^5x2 |
k=1 |
Bond Price = 875.25 |
%age change in price =(New price-Old price)*100/old price |
%age change in price = (875.25-915.75)*100/915.75 |
= -4.42% |