In: Finance
Please answer the questions in the space provided below each question. Show all of your work and circle your final answer.
Economic Scenario |
Stock Fund |
Bond Fund |
Probability of Scenario |
Recession |
-18% |
6% |
0.3 |
Flat |
8% |
4% |
0.45 |
Boom |
20% |
-8% |
0.25 |
Using this information, you find for the stock fund: E(rS)=0.032 and σS=0.1469, and for the bond fund: E(rB)=0.016 and σB=0.0561.
You put 70% of your portfolio in the stock fund and the remaining 30% in the bond fund.
Stock | |||||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (A)^2* probability | ||
Recession | 0.3 | -18 | -5.4 | -21.2 | 0.0134832 | ||
Flat | 0.45 | 8 | 3.6 | 4.8 | 0.0010368 | ||
Boom | 0.25 | 20 | 5 | 16.8 | 0.007056 | ||
Expected return %= | sum of weighted return = | 3.2 | Sum=Variance Stock= | 0.02158 | |||
Standard deviation of Stock% | =(Variance)^(1/2) | 14.69 | |||||
Bond | |||||||
Scenario | Probability | Return% | =rate of return% * probability | Actual return -expected return(A)% | (B)^2* probability | ||
Recession | 0.3 | 6 | 1.8 | 4.4 | 0.0005808 | ||
Flat | 0.45 | 4 | 1.8 | 2.4 | 0.0002592 | ||
Boom | 0.25 | -8 | -2 | -9.6 | 0.002304 | ||
Expected return %= | sum of weighted return = | 1.6 | Sum=Variance Bond= | 0.00314 | |||
Standard deviation of Bond% | =(Variance)^(1/2) | 5.61 | |||||
Covariance Stock Bond: | |||||||
Scenario | Probability | Actual return% -expected return% for A(A) | Actual return% -expected return% For B(B) | (A)*(B)*probability | |||
Recession | 0.3 | -21.2 | 4.4 | -0.0027984 | |||
Flat | 0.45 | 4.8 | 2.4 | 0.0005184 | |||
Boom | 0.25 | 16.8 | -9.6 | -0.004032 | |||
A. | Covariance=sum= | -0.006312 | |||||
B. Correlation A&B= | Covariance/(std devA*std devB)= | -0.766373104 | |||||
C. | |||||||
Variance= | =( w2A*σ2(RA) + w2B*σ2(RB) + 2*(wA)*(wB)*Cor(RA, RB)*σ(RA)*σ(RB)) | ||||||
Variance= | 0.0082 | ||||||
Standard deviation= | (variance)^0.5 | ||||||
Standard deviation%= | 9.06 |