In: Statistics and Probability
The following data represent the muzzle velocity (in feet per second) of rounds fired from a 155-mm gun. For each round, two measurements of the velocity were recorded using two different measuring devices, resulting in the following data. Complete parts (a) through (d) below. Observation 1 2 3 4 5 6 A 793.1 790.6 791.8 793.5 794.7 790.2 B 797.9 786.7 794.4 792.8 796.9 789.8 (a) Why are these matched-pairs data? b. Is there a difference in the measurement of the muzzle velocity between device A and device B at the alpha equals 0.01α=0.01 level of significance? Note: A normal probability plot and boxplot of the data indicate that the differences are approximately normally distributed with no outliers.Let di=Ai−Bi. Identify the null and alternative hypotheses. Upper H 0H0: Upper H 1H1: Determine the test statistic for this hypothesis test. t0= (Round to two decimal places as needed.) Find the P-value. P-valuee= (Round to three decimal places as needed.)What is your conclusion regarding Upper H 0= α=0.01 level of significance to conclude that there is a difference in the measurements of velocity between device A and device B. (c) Construct a 99% confidence interval about the population interval Interpret the confidence interval draw a boxplot
a)
these are matched-pairs data becaue For each round, two measurements of the velocity were recorded using two different measuring devices .hence, data is dependent
b)
Ho :   µd=   0
Ha :   µd ╪   0
| Sample #1 | Sample #2 | difference , Di =sample1-sample2 | (Di - Dbar)² | 
| 793.1 | 797.9 | -4.800 | 16.2678 | 
| 790.6 | 786.7 | 3.900 | 21.7778 | 
| 791.8 | 794.4 | -2.600 | 3.3611 | 
| 793.5 | 792.8 | 0.700 | 2.1511 | 
| 794.7 | 796.9 | -2.200 | 2.0544 | 
| 790.2 | 789.8 | 0.400 | 1.3611 | 
| sample 1 | sample 2 | Di | (Di - Dbar)² | |
| sum = | 4753.9 | 4758.5 | -4.6 | 47.0 | 
mean of difference ,    D̅ =ΣDi / n =  
-0.767          
       
          
           
   
std dev of difference , Sd =    √ [ (Di-Dbar)²/(n-1) =
   3.0651      
           
          
           
   
std error , SE = Sd / √n =    3.0651   /
√   6   =   1.2513  
   
          
           
   
t-statistic = (D̅ - µd)/SE = (   -0.7667  
-   0   ) /    1.2513  
=   -0.61
Degree of freedom, DF=   n - 1 =   
5      
  
p-value =        0.567 [excel function:
=t.dist.2t(t-stat,df) ]   
p-value>α , Do not reject null hypothesis  
there is not enough evidence to  conclude that there is a
difference in the measurements of velocity between device A and
device B
c)
sample size ,    n =    6  
       
Degree of freedom, DF=   n - 1 =   
5   and α =    0.01  
t-critical value =    t α/2,df =   
4.0321   [excel function: =t.inv.2t(α/2,df) ]  
   
          
       
std dev of difference , Sd =    √ [ (Di-Dbar)²/(n-1) =
   3.0651      
   
          
       
std error , SE = Sd / √n =    3.0651   /
√   6   =   1.2513
margin of error, E = t*SE =    4.0321  
*   1.2513   =   5.0455
          
       
mean of difference ,    D̅ =  
-0.767          
confidence interval is       
           
Interval Lower Limit= D̅ - E =   -0.767  
-   5.0455   =   -5.8121
Interval Upper Limit= D̅ + E =   -0.767  
+   5.0455   =   4.2788
          
       
so, confidence interval is (   -5.8121   <
µd <   4.2788   )