In: Statistics and Probability
Solve the following linear programming problem using Solver. Be sure to write in your optimal solution below the problem. Max Z = 20X1 + 30X2 + 25X3 + 32X4 s.t. 4X1 + 8X2 + 5X3 + 6X4 ≤ 40 X1 + X2 ≥ 3 (X1 + X2) ≤ (X3 + X4) ?1 ?2 ≥ 3 2 X1 = __________ X2 = ___________ X3 = ___________ X4 = ___________ Z = ____________
IT IS DONE BY MICROSOFT EXEL SOLVER
| variables | ||||
| x1 | 1.29E-07 | |||
| x2 | 2.49E+08 | |||
| x3 | 3.49E+09 | |||
| x4 | -3.2E+09 | |||
| objective | ||||
| maximize | 9.46E+10 | |||
| constraints | ||||
| inequality | RHS | |||
| 1 | 40 | <= | 40 | |
| 2 | 2.49E+08 | >= | 3 | |
| 3 | 0 | <= | 0 | |
| 4 | 32 | >= | 32 | |
| Microsoft Excel 12.0 Answer Report | ||||||
| Worksheet: [Book2]Sheet1 | ||||||
| Report Created: 04-03-2020 00:17:20 | ||||||
| Target Cell (Max) | ||||||
| Cell | Name | Original Value | Final Value | |||
| $B$8 | maximize | 0 | 94606635103 | |||
| Adjustable Cells | ||||||
| Cell | Name | Original Value | Final Value | |||
| $B$2 | x1 | 0 | 1.28532E-07 | |||
| $B$3 | x2 | 0 | 248964831.9 | |||
| $B$4 | x3 | 0 | 3485507606 | |||
| $B$5 | x4 | 0 | -3236542774 | |||
| Constraints | ||||||
| Cell | Name | Cell Value | Formula | Status | Slack | |
| $B$12 | 40 | $B$12<=$D$12 | Binding | 0 | ||
| $B$13 | 248964831.9 | $B$13>=$D$13 | Not Binding | 248964828.9 | ||
| $B$14 | 0 | $B$14<=$D$14 | Binding | 0 | ||
| $B$15 | 31.99999967 | $B$15>=$D$15 | Binding | 0 | ||