Question

In: Statistics and Probability

For the following linear programming problem, determine the optimal solution by the graphical solution method Max...

For the following linear programming problem, determine the optimal solution by the graphical solution method
Max -x + 2y
s.t. 6x - 2y <= 3
-2x + 3y <= 6
    x +   y <= 3
        x, y >= 0

Solutions

Expert Solution


Related Solutions

Use the graphical method for linear programming to find the optimal solution for the following problem....
Use the graphical method for linear programming to find the optimal solution for the following problem. Maximize P = 4x + 5 y subject to 2x + 4y ≤ 12                 5x + 2y ≤ 10 and      x ≥ 0, y ≥ 0. graph the feasible region
For the following LP problem, determine the optimal solution by the graphical solution method. Min Z=...
For the following LP problem, determine the optimal solution by the graphical solution method. Min Z= 3x1+2x2 Subject to 2x1+x2 >10                    -3x1+2x2 < 6                      X1+x2 > 6                      X1,x1 > 0 Graph and shade the feasible region
What's the optimal solution to this linear programming problem? Max 2X + 3Y s.t.   4X +  ...
What's the optimal solution to this linear programming problem? Max 2X + 3Y s.t.   4X +   9Y ≤ 72 10X + 11Y ≤ 110 17X +   9Y ≤ 153           X, Y ≥ 0
Find the complete optimal solution to this linear programming problem. Max 5x + 3y s.t. 2x...
Find the complete optimal solution to this linear programming problem. Max 5x + 3y s.t. 2x + 3y <=30 2x + 5y <= 40 6x - 5y <= 0      x , y >= 0 I AM USING EXCEL FOR THIS QUESTION PLEASE SHOW ALL WORK AND FORMULAS, THANK YOU
Find the optimal values of x and y using the graphical solution method: Max x +...
Find the optimal values of x and y using the graphical solution method: Max x + 5y subject to: x + y ≤ 5 2x + y ≤ 8 x + 2y ≤ 8 x ≥ 0, y ≥ 0
The optimal solution of the linear programming problem is at the intersection of constraints 1 and...
The optimal solution of the linear programming problem is at the intersection of constraints 1 and 2. Please answer the following questions by using graphical sensitivity analysis. Max s.t. Max 2x1 + x2 s.t. 4x1 +1x2 ≤8 4x1 +3x2 ≤12 1x1 +2x2 ≤6 x1 , x2 ≥ 0 Over what range can the coefficient of x1 vary before the current solution is no longer optimal? Over what range can the coefficient of x2 vary before the current solution is no...
Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate...
Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate whether the feasible region is empty or the objective function is unbounded. (Enter EMPTY if the feasible region is empty and UNBOUNDED if the objective function is unbounded.) Minimize c = x + y + z + w subject to x + y ≥ 80 x + z ≥ 60 x + y − w ≤ 50 y + z − w ≤ 50...
Solve the following linear programming problem using the dual simplex method: max ? = −?1 −...
Solve the following linear programming problem using the dual simplex method: max ? = −?1 − 2?2 s.t. −2?1 + 7?2 ≤ 6 −3?1 + ?2 ≤ −1 9?1 − 4?2 ≤ 6 ?1 − ?2 ≤ 1 7?1 − 3?2 ≤ 6 −5?1 + 2?2 ≤ −3 ?1,?2 ≥ 0
What is the difference between the optimal solution to a linear programming problem and the objective...
What is the difference between the optimal solution to a linear programming problem and the objective function value at the optimal solution? Use an example in your explanation
1. The optimal solution of the linear programming problem is at the intersection of constraints 1...
1. The optimal solution of the linear programming problem is at the intersection of constraints 1 and 2. Please answer the following questions by using graphical sensitivity analysis. Max 2x1 + x2 s.t. 4x1 +1x2 ≤8 4x1 +3x2 ≤12   1x1 +2x2 ≤6 x1 , x2 ≥ 0 A. Over what range can the coefficient of x1 vary before the current solution is no longer optimal? B. Over what range can the coefficient of x2 vary before the current solution is...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT