In: Statistics and Probability
Solve this linear programming (LP) problem using the
transportation method. Find the optimal transportation plan and the
minimum cost. (Leave no cells blank - be certain to enter
"0" wherever required. Omit the "$" sign in your
response.)
Minimize 8x11 | + 2x12 + 5x13 + 2x21 + x22 |
+ 3x23 + 7x31 + 2x32 + 6x33 |
Subject to | x11 + x12 + x13 | = | 90 |
x21 + x22 + x23 | = | 105 | |
x31 + x32 + x33 | = | 105 | |
x11 + x21 + x31 | = | 150 | |
x12 + x22 + x32 | = | 75 | |
x13 + x23 + x33 | = | 75 | |
All variables | ≥ | 0 |
x11 = | x12 = | x13 = | |||
x21 = | x22= | x23 = | |||
x31 = | x32 = | x33 = | |||
Total Cost = |
ANS::
as for given data
Decision Variables: |
||||||
Source/Destination |
B1 |
B2 |
B3 |
Supply |
||
A1 |
x11 |
x12 |
x13 |
90 |
||
A2 |
x21 |
x22 |
x23 |
105 |
||
A3 |
x31 |
x32 |
x33 |
105 |
||
Demand |
150 |
75 |
75 |
|||
Cost: |
||||||
Source/Destination |
B1 |
B2 |
B3 |
|||
A1 |
$ 8 |
$ 2 |
$ 5 |
|||
A2 |
$ 2 |
$ 1 |
$ 3 |
|||
A3 |
$ 7 |
$ 2 |
$ 6 |
|||
LP Model: |
||||||
Source/Destination |
B1 |
B2 |
B3 |
Total |
Sign |
Supply |
A1 |
0 |
= |
90 |
|||
A2 |
0 |
= |
105 |
|||
A3 |
0 |
= |
105 |
|||
Total |
0 |
0 |
0 |
|||
Sign |
= |
= |
= |
|||
Demand |
150 |
75 |
75 |
|||
Total Cost |
$ - |
Solution:
x11 = |
0 |
x12 = |
15 |
x13 = |
75 |
x21 = |
105 |
x22 = |
0 |
x23 = |
0 |
x31 = |
45 |
x32 = |
60 |
x33 = |
0 |
Total cost |
$ 1,050 |
thank you....