Question

In: Statistics and Probability

Solve this linear programming (LP) problem using the transportation method. Find the optimal transportation plan and...

Solve this linear programming (LP) problem using the transportation method. Find the optimal transportation plan and the minimum cost. (Leave no cells blank - be certain to enter "0" wherever required. Omit the "$" sign in your response.)

Minimize 8x11 + 2x12 + 5x13 + 2x21 + x22
+ 3x23 + 7x31 + 2x32 + 6x33


Subject to x11 + x12 + x13 = 90
x21 + x22 + x23 = 105
x31 + x32 + x33 = 105
x11 + x21 + x31 = 150
x12 + x22 + x32 = 75
x13 + x23 + x33 = 75
All variables 0


x11 = x12 =   x13 =
x21 = x22= x23 =
x31 = x32 = x33 =

Total Cost =

Solutions

Expert Solution

ANS::

as for given data

Decision Variables:

Source/Destination

B1

B2

B3

Supply

A1

x11

x12

x13

90

A2

x21

x22

x23

105

A3

x31

x32

x33

105

Demand

150

75

75

Cost:

Source/Destination

B1

B2

B3

A1

$             8

$             2

$             5

A2

$             2

$             1

$             3

A3

$             7

$             2

$             6

LP Model:

Source/Destination

B1

B2

B3

Total

Sign

Supply

A1

0

=

90

A2

0

=

105

A3

0

=

105

Total

0

0

0

Sign

=

=

=

Demand

150

75

75

Total Cost

$           -  

Solution:

  x11 =

0

  x12 =

15

  x13 =

75

  x21 =

105

  x22 =

0

  x23 =

0

  x31 =

45

  x32 =

60

  x33 =

0

Total cost

$    1,050

thank you....


Related Solutions

Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate...
Solve the given linear programming problem using the simplex method. If no optimal solution exists, indicate whether the feasible region is empty or the objective function is unbounded. (Enter EMPTY if the feasible region is empty and UNBOUNDED if the objective function is unbounded.) Minimize c = x + y + z + w subject to x + y ≥ 80 x + z ≥ 60 x + y − w ≤ 50 y + z − w ≤ 50...
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and...
Solve the LP problem using graphical method. Determine the optimal values of the decision variables and compute the objective function. Maximize Z = 2A + 10B Subject to 10A + 4B ≥ 40    A + 6B ≥ 24                A + 2B ≤ 14    A, B  ≥ 0 with soln pls thank you!
Use the graphical method for linear programming to find the optimal solution for the following problem....
Use the graphical method for linear programming to find the optimal solution for the following problem. Maximize P = 4x + 5 y subject to 2x + 4y ≤ 12                 5x + 2y ≤ 10 and      x ≥ 0, y ≥ 0. graph the feasible region
Solve the linear programming problem by the method of corners. Find the minimum and maximum of...
Solve the linear programming problem by the method of corners. Find the minimum and maximum of P = 4x + 2y subject to 3x + 5y ≥ 20 3x + y ≤ 16 −2x + y ≤ 1 x ≥ 0, y ≥ 0. The minimum is P =   at (x, y) = The maximum is P =   at (x, y) =
Consider the following transportation problem. Formulate this problem as a linear programming model and solve it...
Consider the following transportation problem. Formulate this problem as a linear programming model and solve it using the MS Excel Solver tool. Shipment Costs ($), Supply, and Demand: Destinations Sources 1 2 3 Supply A 6 9 100 130 B 12 3 5 70 C 4 8 11 100 Demand 80 110 60 (4 points) Volume Shipped from Source A __________ (4 points) Volume Shipped from Source B __________ (4 points) Volume Shipped from Source C __________ (3 points) Minimum...
Solve the following linear programming problem using Solver. Be sure to write in your optimal solution...
Solve the following linear programming problem using Solver. Be sure to write in your optimal solution below the problem. Max Z = 20X1 + 30X2 + 25X3 + 32X4 s.t. 4X1 + 8X2 + 5X3 + 6X4 ≤ 40 X1 + X2 ≥ 3 (X1 + X2) ≤ (X3 + X4) ?1 ?2 ≥ 3 2 X1 = __________ X2 = ___________ X3 = ___________ X4 = ___________ Z = ____________
Solve the following linear programming problem using Solver. Be sure to write in your optimal solution...
Solve the following linear programming problem using Solver. Be sure to write in your optimal solution below the problem. Max Z = 20X1 + 30X2 + 25X3 + 32X4 s.t. 4X1 + 8X2 + 5X3 + 6X4 ≤ 40 X1 + X2 ≥ 3 (X1 + X2) ≤ (X3 + X4) x1/x2 ≥ 3/2 X1 = __________X2 = ___________X3 = ___________X4 = ___________Z = ____________
A manager is applying the Transportation Model of linear programming to solve an aggregate planning problem....
A manager is applying the Transportation Model of linear programming to solve an aggregate planning problem. Demand in period 1 is 100 units, and in period 2, demand is 150 units. The manager has 125 hours of regular employment available for $10/hour each period. In addition, 50 hours of overtime are available for $15/hour each period. Holding costs are $2 per unit each period. a. How many hours of regular employment should be used in period 1? (Assume demand must...
Solve the following linear programming problem using the dual simplex method: max ? = −?1 −...
Solve the following linear programming problem using the dual simplex method: max ? = −?1 − 2?2 s.t. −2?1 + 7?2 ≤ 6 −3?1 + ?2 ≤ −1 9?1 − 4?2 ≤ 6 ?1 − ?2 ≤ 1 7?1 − 3?2 ≤ 6 −5?1 + 2?2 ≤ −3 ?1,?2 ≥ 0
Problem:  Using Solver, solve the linear program to find the optimal number of batches to make of...
Problem:  Using Solver, solve the linear program to find the optimal number of batches to make of each of the three cookies. Price per chocolate chip cookie $                      1.50 Price per sugar cookie $                      1.00 Price per snickerdoodle cookie $                      1.00 Recipes for one batch Number of cookies/batch 20 20 30 Ingredient Chocolate chip cookie recipe Sugar cookie recipe Snickdoodle recipe Butter (sticks) 2 2 2 Sugar (cups) 1 2 1 Eggs 2 3 1 Chocolate chips (cups) 1 0 0...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT