Question

In: Statistics and Probability

1. a) Suppose average monthly sales for retail locations across the United States are approximately normally...

1. a) Suppose average monthly sales for retail locations across the United States are approximately normally distributed with variance σ^2= 5200. We took a sample of size 50 and found ̄x= 12018,  Using this, conduct a hypothesis test with α= 0.05 to test the null hypothesis that the mean is 12000 vs. the alternative hypothesis that it is not. For full credit, state the null and alternative hypothesis, the test statistic, the rejection region, and your conclusion.

b)Using the setup from part a, if we know that the true mean is 12030, what is the probability of a type II error?

c)Using the setup from part a, what would be the p-value of this test? Would you reject the null hypothesis if α= 0.01? How about if α= 0.1

d)Using the set up from part a, perform the hypothesis test again, but now use the alternative hypothesis that the mean is actually greater than 12000.

e)Using the setup from part a, if we know the true mean is 12030 and we want the probability of a type I error to be 0.05 and the probability of a type II error

to be 0.10, what is the minimum sample size required to ensure this?

Solutions

Expert Solution

a)

Ho :   µ =   12000                  
Ha :   µ ╪   12000
    (Two tail test)          
                          
Level of Significance ,    α =    0.05                  
population std dev ,    σ =    72.1110                  
Sample Size ,   n =    50                  
Sample Mean,    x̅ =   12018.0000                  
                          
  
Standard Error , SE = σ/√n =   72.1110   / √    50   =   10.1980      
Z-test statistic= (x̅ - µ )/SE = (   12018.000   -   12000   ) /    10.1980   =   1.77
                          
critical z value, z* =   ±   1.9600   [Excel formula =NORMSINV(α/no. of tails) ]      

rejection region: |test stat | > 1.96

decision: |test stat| < critical value , so do not reject Ho

conclusion: mean is 12000

...........

b)

true mean ,    µ =    12030              
                      
hypothesis mean,   µo =    12018              
significance level,   α =    0.05              
sample size,   n =   50              
std dev,   σ =    72.111              
                      
δ=   µ - µo =    12              
                      
std error of mean,   σx = σ/√n =    72.1110   / √    50   =   10.19804

Zα/2   = ±   1.960   (two tailed test)                      
We will fail to reject the null (commit a Type II error) if we get a Z statistic between                           -1.960   and   1.960
these Z-critical value corresponds to some X critical values ( X critical), such that                                  
                                  
-1.960   ≤(x̄ - µo)/σx≤   1.960                          
11998.012   ≤ x̄ ≤   12037.988                          
                                  
now, type II error is ,ß =        P (   11998.012   ≤ x̄ ≤   12037.988   )          
       Z =    (x̄-true mean)/σx                      
       Z1 = (   11998.012   -   12030   ) /   10.19804   =   -3.137
       Z2 = (   12037.988   -   12030   ) /   10.19804   =   0.783
                                  
   so, P(   -3.137   ≤ Z ≤   0.783   ) = P ( Z ≤   0.783   ) - P ( Z ≤   -3.137   )
                                  
       =   0.783   -   0.001   =   0.78241   [ Excel function: =NORMSDIST(z) ]  


ß = 0.78241

................

c)

p-Value   =   0.0776
α= 0.01

p value > 0.01, do not reject Ho

if α= 0.1

p value < 0.1, reject Ho

...

d)

Ho :   µ =   12000                  
Ha :   µ >   12000       (Right tail test)          
                          
Level of Significance ,    α =    0.05                  
population std dev ,    σ =    72.1110                  
Sample Size ,   n =    50                  
Sample Mean,    x̅ =   12018.0000                  
                                
Standard Error , SE = σ/√n =   72.1110   / √    50   =   10.1980      
Z-test statistic= (x̅ - µ )/SE = (   12018.000   -   12000   ) /    10.1980   =   1.77
                          
critical z value, z* =       1.6449   [Excel formula =NORMSINV(α/no. of tails) ]              
                          
Decision:  test stat > critical value , Reject null hypothesis                       

..............

e)

True mean   µ =    12030                              
hypothesis mean,   µo =    12018                              
                                      
Level of Significance ,    α =    0.05                              
std dev =    σ =    72.111                              
power =    1-ß =    0.9                              
ß=       0.1                              
δ=   µ - µo =    12                              
                                      
Z ( α ) =       1.6449   [excel function: =normsinv(α)                          
                                     
Z (ß) =        1.2816   [excel function: =normsinv(ß)                         
                                      
sample size needed =    n = ( ( Z(ß)+Z(α) )*σ / δ )² = ( (   1.2816   +   1.6449   ) *   72.1   /   12   ) ² =   309.2498
                                      
so, sample size =        310.000                              

thanks

revert back for doubt


Related Solutions

1. a) Suppose average monthly sales for retail locations across the United States are approximately normally...
1. a) Suppose average monthly sales for retail locations across the United States are approximately normally distributed with variance σ^2= 5200. We took a sample of size 50 and found ̄x= 12018,  Using this, conduct a hypothesis test with α= 0.05 to test the null hypothesis that the mean is 12000 vs. the alternative hypothesis that it is not. For full credit, state the null and alternative hypothesis, the test statistic, the rejection region, and your conclusion. b)Using the setup from...
The Cold Mountain Furnace Company is a retail store with locations across the eastern United States....
The Cold Mountain Furnace Company is a retail store with locations across the eastern United States. The company’s projected income statement for its first year of operations, which ends December 31, 2018, and its projected balance sheet as of December 31, 2018, are shown below: Sales $ 4,000,000 Cost of Goods Sold 2,300,000 Gross Margin 1,700,000 Selling and Administrative Expenses 800,000 Net Income $    900,000 Cash $   660,000 Accounts receivable 150,000 Inventory 400,000 Property, plant, and equip. (net of accum....
Japanese automobiles comprise approximately 20% of all new car sales in the United States. Suppose a...
Japanese automobiles comprise approximately 20% of all new car sales in the United States. Suppose a state licensing office received 100 requests for license plates for new cars during a given week.       a) What is the probability that 25 or more of the license requests are for Japanese cars?       b) What is the probability that no more than 10 of the requests are for Japanese cars?       c) What is the probability that at least 10, but no...
According to actuarial tables, life spans in the United States are approximately normally distributed with a...
According to actuarial tables, life spans in the United States are approximately normally distributed with a mean of about 75 years and a standard deviation of about 16 years. 1) Find the probability that a randomly selected person lives between 60 less than 90 years. 2) Find the probability that a randomly selected person lives less than 50 years or more than 100 years. 3) Find the probability that a randomly selected person lives exactly 75 years. 4) What age...
Suppose that the final grades in a stats course are approximately Normally distributed, with an average...
Suppose that the final grades in a stats course are approximately Normally distributed, with an average grade of 83 and a SD of 5. A student is randomly selected. a.) what is the probability that the selected student received an A (at least 90)? b.) the students know that their final grade is at the 81st percentile. Show whether or not that students grade is an A. c.) if the students final grade is a least a B-, what is...
A survey of CPAs across the United States found the average net income for sole proprietor...
A survey of CPAs across the United States found the average net income for sole proprietor CPAs is $114,300. Because this survey is now more than 5 years old, an accounting researcher wants to test this figure by taking a random sample of 36 sole proprietor accountants in the United States to determine whether the average net income has increased. Only 500 sole proprietorships practice in the US. The sample of 36 sole proprietor accountants had a mean of $119,000...
A survey of CPAs across the United States found the average net income for sole proprietor...
A survey of CPAs across the United States found the average net income for sole proprietor CPAs is $114,300. Because this survey is now more than 5 years old, an accounting researcher wants to test this figure by taking a random sample of 36 sole proprietor accountants in the United States to determine whether the average net income has increased. Only 500 sole proprietorships practice in the US. The sample of 36 sole proprietor accountants had a mean of $119,000...
The average monthly mortgage payment including principal and interest is $982 in the United States. If...
The average monthly mortgage payment including principal and interest is $982 in the United States. If the standard deviation is approximately $180 and the mortgage payments are approximately normally distributed, find the probability that a randomly selected monthly payment is: A. Between $800 and $1150 B. Less than $1,000
The money supply for the United States is approximately $15 trillion, and average real GDP growth...
The money supply for the United States is approximately $15 trillion, and average real GDP growth is three percent. If velocity decreases from zero to negative two percent, what value of U.S. Treasury Securities should the Fed buy or sell to target two percent inflation if the reserve ratio is ten percent. Report an open market purchase as a positive number, a sale as a negative number, and round to the nearest billion dollars.
Situation: Suppose a large portion (approximately 20%) of the United States decides that the COVID-19 epidemic...
Situation: Suppose a large portion (approximately 20%) of the United States decides that the COVID-19 epidemic is a sign of the coming apocalypse within the month (assume they are wrong). Approximately half of this group decides to spend all their wealth on doomsday preparation and charitable acts. The other half of this group decides that the world is doomed, there is no hope of fighting it and decides to party and have as much fun as possible for the next...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT